6 research outputs found

    Finding Nature in Your Neighborhood: A Field Mapping Protocol for Community Based Assessment of Greenspace Access

    Get PDF
    The Audubon Society of Portland and PSU Capstone students developed the Greenspace Access Point Field Mapping Protocol during the summer of 2013. The protocol was developed as a tool for a community-based approach to inventorying open space access points and to generate more accurate information on open space access in the Portland-Metro region

    Inequalities in noise will affect urban wildlife

    No full text
    Understanding the extent to which systemic biases influence local ecological communities is essential for developing just and equitable environmental practices. With over 270 million people across the United States living in urban areas, understanding the socio-ecological consequences of racially-targeted zoning, such as redlining, provides crucial information for urban planning. There is a growing body of literature documenting the relationships between redlining and disparities in the distribution of environmental harms and goods, including inequities in green space cover and pollutant exposure. Yet, it remains unknown whether noise pollution is also inequitably distributed, and whether inequitable noise is an important driver of ecological change in urban environments. We conducted 1) a spatial analysis of urban noise to determine the extent to which noise overlaps with the distribution of redlining categories and 2) a systematic literature review to summarize the effects of noise on wildlife in urban landscapes. We found strong evidence that noise is inequitably distributed in cities across the United States, and that inequitable noise may drive complex biological responses across diverse urban wildlife. These findings lay a foundation for future research that advances acoustic and urban ecology by centering equity and challenging systems of oppression.Data can be viewed using any software that can open a .csv file. Code can be viewed using any software that can open a .txt file.Funding provided by: Colorado State UniversityCrossref Funder Registry ID: http://dx.doi.org/10.13039/100007235Award Number:Spatial Analysis of Urban Noise Pollution To evaluate noise exposure across HOLC redlining grades for 83 U.S. cities in our study, we acquired spatial data on the distribution of HOLC grades across U.S. cities from the Mapping Inequality Project. We also acquired data on road, rail, and aircraft noise (hereafter transportation noise models), from the U.S. Department of Transportation, National Transportation Noise Map 2018. The transportation noise models represent potential exposure to transportation noise reported on a decibel scale in a 30m x 30m pixel resolution. Here noise represents the average noise energy produced by road, rail, and aviation networks over a 24-hour period, measured in A-weighted decibels (dBA) (LAeq, 24h) at sampling locations deployed across a uniform grid in each city at an elevation of 1.5 m above ground level. Noise levels below 35 dBA are assumed to have minimal negative impacts to humans and the environment and thus are represented with null values in the transportation noise models. For each HOLC grade and each city, we used zonal statistics in ArcGIS Desktop v. 10.7 to calculate descriptive statistics (median, minimum, maximum, area) for the 30m x 30m pixels in the transportation noise models with non-null noise values (i.e., values > 35 dBA). We used the resulting zonal statistics estimates to calculate an area-corrected measure of excess noise: N = (r * Md)/a where N is excess noise in each HOLC grade (with units of dBA/900 m2); r is the area covered by the 30m x 30m pixels with noise values >35 dBA across all polygons of the same HOLC grade in each city; Md is the median transportation noise value (in dBA) for those same pixels; and a is the total area of all polygons of the same HOLC grade in each city. Literature Review Methodology To assess the effects of noise on wildlife in urban environments, we conducted a literature review using Thompson's ISI Web of Science and adapting the methods of Shannon et al. (2016). We adjusted Shannon et al. (2016) search criteria to include urban phrases, resulting in the following search terms (TS=(WILDLIFE OR ANIMAL OR MAMMAL OR REPTILE OR AMPHIBIAN OR BIRD OR FISH OR INVERTEBRATE) AND TS=(NOISE OR SONAR) AND TS=(CITY OR *URBAN OR METROPOLITAN)). We only selected papers published between 1990 and 23 June 2021 (i.e., the date we conducted our search) within the ISI Web of Science categories of 'Acoustics', 'Zoology', 'Ecology', 'Environmental Sciences', 'Ornithology', 'Biodiversity Conservation', 'Evolutionary Biology', and 'Marine Freshwater Biology'. This returned 691 peer-reviewed papers, which we filtered so only empirical studies focused on documenting the effects of anthropogenic noise on wildlife in urban or suburban ecosystems or the effects of urban noise on wildlife in rural environments were included in the final data set. We excluded reviews, meta-analyses, methods papers, and research that took place outside of urban or suburban areas where the noise was not explicitly denoted as urban (e.g., omitted studies that measured traffic noise by parks and reserves in rural areas). For the 241 articles previously analyzed in Shannon et al. (2016), one of our authors reviewed each paper to determine which studies were focused on urban noise. We also verified the noise levels that caused a significant biological response, noting each noise level if multiple responses were recorded. For any new articles published since the Shannon et al. (2016) dataset or those published between 1990 and 2013 but not reviewed by Shannon et al. (2016) (n = 96), two of our authors reviewed each paper to first determine which studies met our criteria and then compiled data on a number of variables of interest, including the noise levels and their resulting biological responses that were statistically significant. For this subset of papers, one author was randomly assigned a list of papers and then a second author was randomly assigned to assess the accuracy of the data collected by the first author. Any discrepancies were discussed as a group until an agreement was reached. Noise categories (environmental, transportation, industrial, multiple, other) were chosen for each paper by noting the explicitly stated source or description of urban noise described in the methodology. Noise levels and their units were reported for each paper, with only noise levels reported in decibels (dB) being used in data analysis. We recorded the sound metric used (i.e., SPL, SPL Max, Leq) for each paper and also recorded the weightings for each noise level

    Inequalities in noise will affect urban wildlife

    No full text
    Understanding the extent to which systemic biases influence local ecological communities is essential for developing just and equitable environmental practices. With over 270 million people across the United States living in urban areas, understanding the socio-ecological consequences of racially-targeted zoning, such as redlining, provides crucial information for urban planning. There is a growing body of literature documenting the relationships between redlining and disparities in the distribution of environmental harms and goods, including inequities in green space cover and pollutant exposure. Yet, it remains unknown whether noise pollution is also inequitably distributed, and whether inequitable noise is an important driver of ecological change in urban environments. We conducted 1) a spatial analysis of urban noise to determine the extent to which noise overlaps with the distribution of redlining categories and 2) a systematic literature review to summarize the effects of noise on wildlife in urban landscapes. We found strong evidence that noise is inequitably distributed in cities across the United States, and that inequitable noise may drive complex biological responses across diverse urban wildlife. These findings lay a foundation for future research that advances acoustic and urban ecology by centering equity and challenging systems of oppression.Data can be viewed using any software that can open a .csv file. Code can be viewed using any software that can open a .txt file.Funding provided by: Colorado State UniversityCrossref Funder Registry ID: http://dx.doi.org/10.13039/100007235Award Number:Spatial Analysis of Urban Noise Pollution To evaluate noise exposure across HOLC redlining grades for 83 U.S. cities in our study, we acquired spatial data on the distribution of HOLC grades across U.S. cities from the Mapping Inequality Project. We also acquired data on road, rail, and aircraft noise (hereafter transportation noise models), from the U.S. Department of Transportation, National Transportation Noise Map 2018. The transportation noise models represent potential exposure to transportation noise reported on a decibel scale in a 30m x 30m pixel resolution. Here noise represents the average noise energy produced by road, rail, and aviation networks over a 24-hour period, measured in A-weighted decibels (dBA) (LAeq, 24h) at sampling locations deployed across a uniform grid in each city at an elevation of 1.5 m above ground level. Noise levels below 35 dBA are assumed to have minimal negative impacts to humans and the environment and thus are represented with null values in the transportation noise models. For each HOLC grade and each city, we used zonal statistics in ArcGIS Desktop v. 10.7 to calculate descriptive statistics (median, minimum, maximum, area) for the 30m x 30m pixels in the transportation noise models with non-null noise values (i.e., values > 35 dBA). We used the resulting zonal statistics estimates to calculate an area-corrected measure of excess noise: N = (r * Md)/a where N is excess noise in each HOLC grade (with units of dBA/900 m2); r is the area covered by the 30m x 30m pixels with noise values >35 dBA across all polygons of the same HOLC grade in each city; Md is the median transportation noise value (in dBA) for those same pixels; and a is the total area of all polygons of the same HOLC grade in each city. Literature Review Methodology To assess the effects of noise on wildlife in urban environments, we conducted a literature review using Thompson's ISI Web of Science and adapting the methods of Shannon et al. (2016). We adjusted Shannon et al. (2016) search criteria to include urban phrases, resulting in the following search terms (TS=(WILDLIFE OR ANIMAL OR MAMMAL OR REPTILE OR AMPHIBIAN OR BIRD OR FISH OR INVERTEBRATE) AND TS=(NOISE OR SONAR) AND TS=(CITY OR *URBAN OR METROPOLITAN)). We only selected papers published between 1990 and 23 June 2021 (i.e., the date we conducted our search) within the ISI Web of Science categories of 'Acoustics', 'Zoology', 'Ecology', 'Environmental Sciences', 'Ornithology', 'Biodiversity Conservation', 'Evolutionary Biology', and 'Marine Freshwater Biology'. This returned 691 peer-reviewed papers, which we filtered so only empirical studies focused on documenting the effects of anthropogenic noise on wildlife in urban or suburban ecosystems or the effects of urban noise on wildlife in rural environments were included in the final data set. We excluded reviews, meta-analyses, methods papers, and research that took place outside of urban or suburban areas where the noise was not explicitly denoted as urban (e.g., omitted studies that measured traffic noise by parks and reserves in rural areas). For the 241 articles previously analyzed in Shannon et al. (2016), one of our authors reviewed each paper to determine which studies were focused on urban noise. We also verified the noise levels that caused a significant biological response, noting each noise level if multiple responses were recorded. For any new articles published since the Shannon et al. (2016) dataset or those published between 1990 and 2013 but not reviewed by Shannon et al. (2016) (n = 96), two of our authors reviewed each paper to first determine which studies met our criteria and then compiled data on a number of variables of interest, including the noise levels and their resulting biological responses that were statistically significant. For this subset of papers, one author was randomly assigned a list of papers and then a second author was randomly assigned to assess the accuracy of the data collected by the first author. Any discrepancies were discussed as a group until an agreement was reached. Noise categories (environmental, transportation, industrial, multiple, other) were chosen for each paper by noting the explicitly stated source or description of urban noise described in the methodology. Noise levels and their units were reported for each paper, with only noise levels reported in decibels (dB) being used in data analysis. We recorded the sound metric used (i.e., SPL, SPL Max, Leq) for each paper and also recorded the weightings for each noise level

    Inequalities in noise will affect urban wildlife

    No full text
    Understanding how systemic biases influence local ecological communities is essential for developing just and equitable environmental practices that prioritize both human and wildlife well-being. With over 270 million residents inhabiting urban areas in the United States, the socioecological consequences of racially targeted zoning, such as redlining, need to be considered in urban planning. There is a growing body of literature documenting the relationships between redlining and the inequitable distribution of environmental harms and goods, green space cover and pollutant exposure. However, it remains unknown whether historical redlining affects the distribution of urban noise or whether inequitable noise drives an ecological change in urban environments. Here we conducted a spatial analysis of how urban noise corresponds to the distribution of redlining categories and a systematic literature review to summarize the effects of noise on wildlife in urban landscapes. We found strong evidence to indicate that noise is inequitably distributed in redlined urban communities across the United States, and that inequitable noise may drive complex biological responses across diverse urban wildlife, reinforcing the interrelatedness of socioecological outcomes. These findings lay a foundation for future research that advances relationships between acoustic and urban ecology through centring equity and challenging systems of oppression in wildlife studies
    corecore