16 research outputs found

    Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters

    Get PDF
    Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide

    The role of DNA methylation in directing the functional organization of the cancer epigenome

    Get PDF
    The holistic role of DNA methylation in the organization of the cancer epigenome is not well understood. Here we perform a comprehensive, high-resolution analysis of chromatin structure to compare the landscapes of HCT116 colon cancer cells and a DNA methylation-deficient derivative. The NOMe-seq accessibility assay unexpectedly revealed symmetrical and transcription-independent nucleosomal phasing across active, poised, and inactive genomic elements. DNA methylation abolished this phasing primarily at enhancers and CpG island (CGI) promoters, with little effect on insulators and non-CGI promoters. Abolishment of DNA methylation led to the context-specific reestablishment of the poised and active states of normal colon cells, which were marked in methylation-deficient cells by distinct H3K27 modifications and the presence of either well-phased nucleosomes or nucleosome-depleted regions, respectively. At higher-order genomic scales, we found that long, H3K9me3-marked domains had lower accessibility, consistent with a more compact chromatin structure. Taken together, our results demonstrate the nuanced and context-dependent role of DNA methylation in the functional, multiscale organization of cancer epigenomes.Charles Heidelberger Memorial Fellowshi

    A Prostate Cancer Risk Element Functions as a Repressive Loop that Regulates HOXA13

    No full text
    Summary: Prostate cancer (PCa) is the leading cancer among men in the United States, with genetic factors contributing to ∼42% of the susceptibility to PCa. We analyzed a PCa risk region located at 7p15.2 to gain insight into the mechanisms by which this noncoding region may affect gene regulation and contribute to PCa risk. We performed Hi-C analysis and demonstrated that this region has long-range interactions with the HOXA locus, located ∼873 kb away. Using the CRISPR/Cas9 system, we deleted a 4-kb region encompassing several PCa risk-associated SNPs and performed RNA-seq to investigate transcriptomic changes in prostate cells lacking the regulatory element. Our results suggest that the risk element affects the expression of HOXA13 and HOTTIP, but not other genes in the HOXA locus, via a repressive loop. Forced expression of HOXA13 was performed to gain further insight into the mechanisms by which this risk element affects PCa risk. : Luo et al. identify an 800-kb loop between a prostate cancer risk region and HOXA13. Deleting the risk region removes one anchor point of the repressive loop and upregulates HOXA13, leading to changes in the transcriptome, including overexpression of an oncogene (GATA2). Keywords: Hi-C, chromatin structure, transcriptional regulation, GWAS, CRISPR, HOX gene

    Cbx3 maintains lineage specificity during neural differentiation.

    No full text
    Chromobox homolog 3 (Cbx3/heterochromatin protein 1γ [HP1γ]) stimulates cell differentiation, but its mechanism is unknown. We found that Cbx3 binds to gene promoters upon differentiation of murine embryonic stem cells (ESCs) to neural progenitor cells (NPCs) and recruits the Mediator subunit Med26. RNAi knockdown of either Cbx3 or Med26 inhibits neural differentiation while up-regulating genes involved in mesodermal lineage decisions. Thus, Cbx3 and Med26 together ensure the fidelity of lineage specification by enhancing the expression of neural genes and down-regulating genes specific to alternative fates
    corecore