8 research outputs found

    Nonequilibrium steady states of driven magnetic flux lines in disordered type-II superconductors

    Full text link
    We investigate driven magnetic flux lines in layered type-II superconductors subject to various configurations of strong point or columnar pinning centers by means of a three-dimensional elastic line model and Metropolis Monte Carlo simulations. We characterize the resulting nonequilibrium steady states by means of the force-velocity / current-voltage curve, static structure factor, mean vortex radius of gyration, number of double-kink and half-loop excitations, and velocity / voltage noise spectrum. We compare the results for the above observables for randomly distributed point and columnar defects, and demonstrate that the three-dimensional flux line structures and their fluctuations lead to a remarkable variety of complex phenomena in the steady-state transport properties of bulk superconductors.Comment: 23 pages, IOP style, 18 figures include

    Upper critical field divergence induced by mesoscopic phase separation in the organic superconductor (TMTSF)2ReO4

    Full text link
    Due to the competition of two anion orders, (TMTSF)2ReO4, presents a phase coexistence between semiconducting and metallic (superconducting) regions (filaments or droplets) in a wide range of pressure. In this regime, the superconducting upper critical field for H parallel to both c* and b' axes present a linear part at low fields followed by a divergence above a cross-over field. This cross-over corresponds to the 3D-2D decoupling transition expected in filamentary or granular superconductors. The sharpness of the transition also demonstrates that all filaments are of similar sizes and self organize in a very ordered way. The distance between the filaments and their cross-section are estimated.Comment: 4 pages, 4 figure

    Systematic characterization of upper critical fields for MgB2_2 thin films using the two-band superconducting theory

    Full text link
    We present experimental results of the upper critical fields Hc2H_{\rm c2} of various MgB2_2 thin films prepared by the molecular beam epitaxy, multiple-targets sputtering, and co-evaporation deposition apparatus. Experimental data of the Hc2(T)H_{\rm c2}(T) are successfully analyzed by applying the Gurevich theory of dirty two-band superconductivity in the case of Dπ/Dσ>1D_{\pi}/D_{\sigma}>1, where DπD_{\pi} and DσD_{\sigma} are the intraband electron diffusivities for π\pi and σ\sigma bands, respectively. We find that the parameters obtained from the analysis are strongly correlated to the superconducting transition temperature TcT_{\rm c} of the films. We also discuss the anormalous narrowing of the transition width at intermediate temperatures confirmed by the magnetoresistance measurements.Comment: 7 pages, 7 figures, submitted to Phys. Rev.

    Applicability of layered sine-Gordon models to layered superconductors: II. The case of magnetic coupling

    Full text link
    In this paper, we propose a quantum field theoretical renormalization group approach to the vortex dynamics of magnetically coupled layered superconductors, to supplement our earlier investigations on the Josephson-coupled case. We construct a two-dimensional multi-layer sine-Gordon type model which we map onto a gas of topological excitations. With a special choice of the mass matrix for our field theoretical model, vortex dominated properties of magnetically coupled layered superconductors can be described. The well known interaction potentials of fractional flux vortices are consistently obtained from our field-theoretical analysis, and the physical parameters (vortex fugacity and temperature parameter) are also identified. We analyse the phase structure of the multi-layer sine--Gordon model by a differential renormalization group method for the magnetically coupled case from first principles. The dependence of the transition temperature on the number of layers is found to be in agreement with known results based on other methods.Comment: 7 pages, 1 figure, published in J. Phys.: Condens. Matte

    Phase dynamics of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation

    Full text link
    The Josephson effects associated with quantum tunneling of Cooper pairs manifest as nonlinear relations between the superconductivity phase difference and the bias current and voltage. Many novel phenomena appear, such as Shapiro steps in dc cuurent-voltage (IV) characteristics of a Josephson junction under microwave shining, which can be used as a voltage standard. Inversely, the Josephson effects provide a unique way to generate high-frequency electromagnetic (EM) radiation by dc bias voltage. The discovery of cuprate high-Tc superconductors accelerated the effort to develop novel source of EM waves based on a stack of atomically dense-packed intrinsic Josephson junctions (IJJs), since the large superconductivity gap covers the whole terahertz frequency band. Very recently, strong and coherent terahertz radiations have been successfully generated from a mesa structure of Bi2Sr2CaCu2O8+δ\rm{Bi_2Sr_2CaCu_2O_{8+\delta}} single crystal which works both as the source of energy gain and as the cavity for resonance. It is then found theoretically that, due to huge inductive coupling of IJJs produced by the nanometer junction separation and the large London penetration depth of order of μm\rm{\mu m} of the material, a novel dynamic state is stabilized in the coupled sine-Gordon system, in which ±π\pm \pi kinks in phase differences are developed responding to the standing wave of Josephson plasma and are stacked alternatively in the c-axis. This novel solution of the inductively coupled sine-Gordon equations captures the important features of experimental observations. The theory predicts an optimal radiation power larger than the one available to date by orders of magnitude, and thus suggests the technological relevance of the phenomena.Comment: review article (69 pages, 30 figures

    Vortex Chains in Anisotropic Superconductors

    Full text link
    High-T_c superconductors in small magnetic fields directed away from the crystal symmetry axes have been found to exhibit inhomogeneous chains of flux lines (vortices), in contrast to the usual regular triangular flux-line lattice. We review the experimental observations of these chains, and summarize the theoretical background that explains their appearance. We treat separately two classes of chains: those that appear in superconductors with moderate anisotropy due to an attractive part of the interaction between tilted flux lines, and those with high anisotropy where the tilted magnetic flux is created by two independent and perpendicular crossing lattices. In the second case it is the indirect attraction between a flux line along the layers (Josephson vortex) and a flux line perpendicular to the layers (pancake vortex stack) that leads to the formation of chains of the pancake vortex stacks. This complex system contains a rich variety of phenomena, with several different equilibrium phases, and an extraordinary dynamic interplay between the two sets of crossing vortices. We compare the theoretical predictions of these phenomena with the experimental observations made to date. We also contrast the different techniques used to make these observations. While it is clear that this system forms a wonderful playground for probing the formation of structures with competing interactions, we conclude that there are important practical implications of the vortex chains that appear in highly anisotropic superconductors.Comment: Topical review for Journal of Physics: Condensed Matter; large pdf file 1.9M
    corecore