560 research outputs found

    Use of optical fibers in spectrophotometry

    Get PDF
    The use of single or small numbers of fiber optic fibers in astronomical spectroscopy with the goal of greater spectrophotometric and radial velocity accuracy is discussed. The properties of multimode step index fibers which are most important for this application are outlined, as are laboratory tests of currently available fibers

    ROSAT x ray survey observations of active chromospheric binary systems and other selected sources

    Get PDF
    The connection between processes that produce optical chromospheric activity indicators and those that produce x-rays in RS CVn binary systems by taking advantage of the ROSAT All-Sky Survey (RASS) results and our unique ground-based data set was investigated. In RS CVn systems, excess emission in the Ca 2 resonance (K & H) and infrared triplet (IRT) lines and in the Balmer lines of hydrogen is generally cited as evidence for chromospheric activity, which is usually modeled as scaled up solar-type activity. X-ray emission in RS CVn systems is believed to arise from coronal loop structures. Results from spectra data obtained from RASS observations are discussed and presented

    Li I enhancement during a long-duration stellar flare

    Get PDF
    We report the possible detection of a Li I 6708 AA line enhancement during an unusual long-duration optical flare in the recently discovered, X-ray/EUV selected, chromospherically active binary 2RE J0743+224. The Li I equivalent width (EW) variations follow the temporal evolution of the flare and large changes are observed in the intensity of the line. The maximum Li I enhancement occurs just after the maximum chromospheric emission observed in the flare. A significant increase of the 6Li/7Li isotopic ratio is also detected. No significant simultaneous variations are detected in other photospheric lines. Neither line blends nor starspots seem to be the primary cause of the observed Li I line variation. From all this we suggest that this Li I enhancement is produced by spallation reactions during the flare.Comment: Latex file with 5 pages, 2 figures tar'ed gzip'ed. Full postscript (text and figures) available at http://www.ucm.es/OTROS/Astrof/pub_dmg.html To be published in A&A, Lette

    Effect of trend elimination on tests for time series

    Get PDF

    Review Essays

    Get PDF

    Kepler Mission Stellar and Instrument Noise Properties Revisited

    Full text link
    An earlier study of the Kepler Mission noise properties on time scales of primary relevance to detection of exoplanet transits found that higher than expected noise followed to a large extent from the stars, rather than instrument or data analysis performance. The earlier study over the first six quarters of Kepler data is extended to the full four years ultimately comprising the mission. Efforts to improve the pipeline data analysis have been successful in reducing noise levels modestly as evidenced by smaller values derived from the current data products. The new analyses of noise properties on transit time scales show significant changes in the component attributed to instrument and data analysis, with essentially no change in the inferred stellar noise. We also extend the analyses to time scales of several days, instead of several hours to better sample stellar noise that follows from magnetic activity. On the longer time scale there is a shift in stellar noise for solar-type stars to smaller values in comparison to solar values.Comment: 10 pages, 8 figures, accepted by A

    Improvement and further development of SSM/I overland parameter algorithms using the WetNet workstation

    Get PDF
    Since the launch of the DMSP Special Sensor Microwave/Imager (SSM/I), several algorithms have been developed to retrieve overland parameters. These include the present operational algorithms resulting from the Navy calibration/validation effort such as land surface type (Neale et al. 1990), land surface temperature (McFarland et al. 1990), surface moisture (McFarland and Neale, 1991) and snow parameters (McFarland and Neale, 1991). In addition, other work has been done including the classification of snow cover and precipitation using the SSM/I (Grody, 1991). Due to the empirical nature of most of the above mentioned algorithms, further research is warranted and improvements can probably be obtained through a combination of radiative transfer modelling to study the physical processes governing the microwave emissions at the SSM/I frequencies, and the incorporation of additional ground truth data and special cases into the regression data sets. We have proposed specifically to improve the retrieval of surface moisture and snow parameters using the WetNet SSM/I data sets along with ground truth information namely climatic variables from the NOAA cooperative network of weather stations as well as imagery from other satellite sensors such as the AVHRR and Thematic Mapper. In the case of surface moisture retrievals the characterization of vegetation density is of primary concern. The higher spatial resolution satellite imagery collected at concurrent periods will be used to characterize vegetation types and amounts which, along with radiative transfer modelling should lead to more physically based retrievals. Snow parameter retrieval algorithm improvement will initially concentrate on the classification of snowpacks (dry snow, wet snow, refrozen snow) and later on specific products such as snow water equivalent. Significant accomplishments in the past year are presented

    Development of a New, Precise Near-infrared Doppler Wavelength Reference: A Fiber Fabry-Perot Interferometer

    Full text link
    We present the ongoing development of a commercially available Micron Optics fiber-Fabry Perot Interferometer as a precise, stable, easy to use, and economic spectrograph reference with the goal of achieving <1 m/s long term stability. Fiber Fabry-Perot interferometers (FFP) create interference patterns by combining light traversing different delay paths. The interference creates a rich spectrum of narrow emission lines, ideal for use as a precise Doppler reference. This fully photonic reference could easily be installed in existing NIR spectrographs, turning high resolution fiber-fed spectrographs into precise Doppler velocimeters. First light results on the Sloan Digital Sky Survey III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph and several tests of major support instruments are also presented. These instruments include a SuperK Photonics fiber supercontinuum laser source and precise temperature controller. A high resolution spectrum obtained using the NIST 2-m Fourier transform spectrometer (FTS) is also presented. We find our current temperature control precision of the FFP to be 0.15 mK, corresponding to a theoretical velocity stability of 35 cm/s due to temperature variations of the interferometer cavity.Comment: 16 pages, 11 figures. To appear in the proceedings of the SPIE 2012 Astronomical Instrumentation and Telescopes conferenc
    corecore