12 research outputs found

    One-Pot C–N/C–C Cross-Coupling of Methyliminodiacetic Acid Boronyl Arenes Enabled by Protective Enolization

    No full text
    Iterative cross-coupling is a highly efficient and versatile strategy for modular construction in organic synthesis, though this has historically been demonstrated solely in the context of C–C bond formation. A C–N cross-coupling of haloarene methyliminodiacetic acid (MIDA) boronates with a wide range of aromatic and aliphatic amines is reported. Successful cross-coupling of aliphatic amines was realized only through protective enolization of the MIDA group. This reaction paradigm was subsequently utilized to achieve a one-pot C–N/C–C cross-coupling sequence

    Potent, Selective, and Orally Bioavailable Inhibitors of VPS34 Provide Chemical Tools to Modulate Autophagy <i>in Vivo</i>

    No full text
    Autophagy is a dynamic process that regulates lysosomal-dependent degradation of cellular components. Until recently the study of autophagy has been hampered by the lack of reliable pharmacological tools, but selective inhibitors are now available to modulate the PI 3-kinase VPS34, which is required for autophagy. Here we describe the discovery of potent and selective VPS34 inhibitors, their pharmacokinetic (PK) properties, and ability to inhibit autophagy in cellular and mouse models

    Identification of Small Molecule Inhibitors and Ligand Directed Degraders of Calcium/Calmodulin Dependent Protein Kinase Kinase 1 and 2 (CaMKK1/2)

    No full text
    CaMKK2 signals through AMPK-dependent and AMPK-independent pathways to trigger cellular outputs including proliferation, differentiation, and migration, resulting in changes to metabolism, bone mass accrual, neuronal function, hematopoiesis, and immunity. CAMKK2 is upregulated in tumors including hepatocellular carcinoma, prostate, breast, and gastric cancer, and genetic deletion in myeloid cells results in increased antitumor immunity in several syngeneic models. Validation of the biological roles of CaMKK2 has relied on genetic deletion or small molecule inhibitors with activity against several biological targets. We sought to generate selective inhibitors and degraders to understand the biological impact of inhibiting catalytic activity and scaffolding and the potential therapeutic benefits of targeting CaMKK2. We report herein selective, ligand-efficient inhibitors and ligand-directed degraders of CaMKK2 that were used to probe immune and tumor intrinsic biology. These molecules provide two distinct strategies for ablating CaMKK2 signaling in vitro and in vivo

    Identification of Small Molecule Inhibitors and Ligand Directed Degraders of Calcium/Calmodulin Dependent Protein Kinase Kinase 1 and 2 (CaMKK1/2)

    No full text
    CaMKK2 signals through AMPK-dependent and AMPK-independent pathways to trigger cellular outputs including proliferation, differentiation, and migration, resulting in changes to metabolism, bone mass accrual, neuronal function, hematopoiesis, and immunity. CAMKK2 is upregulated in tumors including hepatocellular carcinoma, prostate, breast, and gastric cancer, and genetic deletion in myeloid cells results in increased antitumor immunity in several syngeneic models. Validation of the biological roles of CaMKK2 has relied on genetic deletion or small molecule inhibitors with activity against several biological targets. We sought to generate selective inhibitors and degraders to understand the biological impact of inhibiting catalytic activity and scaffolding and the potential therapeutic benefits of targeting CaMKK2. We report herein selective, ligand-efficient inhibitors and ligand-directed degraders of CaMKK2 that were used to probe immune and tumor intrinsic biology. These molecules provide two distinct strategies for ablating CaMKK2 signaling in vitro and in vivo

    Discovery of an Acrylic Acid Based Tetrahydro­isoquinoline as an Orally Bioavailable Selective Estrogen Receptor Degrader for ERα+ Breast Cancer

    No full text
    Tetrahydroisoquinoline <b>40</b> has been identified as a potent ERα antagonist and selective estrogen receptor degrader (SERD), exhibiting good oral bioavailability, antitumor efficacy, and SERD activity in vivo. We outline the discovery and chemical optimization of the THIQ scaffold leading to THIQ <b>40</b> and showcase the racemization of the scaffold, pharmacokinetic studies in preclinical species, and the in vivo efficacy of THIQ <b>40</b> in a MCF-7 human breast cancer xenograft model

    Discovery of an Acrylic Acid Based Tetrahydro­isoquinoline as an Orally Bioavailable Selective Estrogen Receptor Degrader for ERα+ Breast Cancer

    No full text
    Tetrahydroisoquinoline <b>40</b> has been identified as a potent ERα antagonist and selective estrogen receptor degrader (SERD), exhibiting good oral bioavailability, antitumor efficacy, and SERD activity in vivo. We outline the discovery and chemical optimization of the THIQ scaffold leading to THIQ <b>40</b> and showcase the racemization of the scaffold, pharmacokinetic studies in preclinical species, and the in vivo efficacy of THIQ <b>40</b> in a MCF-7 human breast cancer xenograft model

    Identification of Small Molecule Inhibitors and Ligand Directed Degraders of Calcium/Calmodulin Dependent Protein Kinase Kinase 1 and 2 (CaMKK1/2)

    No full text
    CaMKK2 signals through AMPK-dependent and AMPK-independent pathways to trigger cellular outputs including proliferation, differentiation, and migration, resulting in changes to metabolism, bone mass accrual, neuronal function, hematopoiesis, and immunity. CAMKK2 is upregulated in tumors including hepatocellular carcinoma, prostate, breast, and gastric cancer, and genetic deletion in myeloid cells results in increased antitumor immunity in several syngeneic models. Validation of the biological roles of CaMKK2 has relied on genetic deletion or small molecule inhibitors with activity against several biological targets. We sought to generate selective inhibitors and degraders to understand the biological impact of inhibiting catalytic activity and scaffolding and the potential therapeutic benefits of targeting CaMKK2. We report herein selective, ligand-efficient inhibitors and ligand-directed degraders of CaMKK2 that were used to probe immune and tumor intrinsic biology. These molecules provide two distinct strategies for ablating CaMKK2 signaling in vitro and in vivo

    Identification of Small Molecule Inhibitors and Ligand Directed Degraders of Calcium/Calmodulin Dependent Protein Kinase Kinase 1 and 2 (CaMKK1/2)

    No full text
    CaMKK2 signals through AMPK-dependent and AMPK-independent pathways to trigger cellular outputs including proliferation, differentiation, and migration, resulting in changes to metabolism, bone mass accrual, neuronal function, hematopoiesis, and immunity. CAMKK2 is upregulated in tumors including hepatocellular carcinoma, prostate, breast, and gastric cancer, and genetic deletion in myeloid cells results in increased antitumor immunity in several syngeneic models. Validation of the biological roles of CaMKK2 has relied on genetic deletion or small molecule inhibitors with activity against several biological targets. We sought to generate selective inhibitors and degraders to understand the biological impact of inhibiting catalytic activity and scaffolding and the potential therapeutic benefits of targeting CaMKK2. We report herein selective, ligand-efficient inhibitors and ligand-directed degraders of CaMKK2 that were used to probe immune and tumor intrinsic biology. These molecules provide two distinct strategies for ablating CaMKK2 signaling in vitro and in vivo

    Discovery of LSZ102, a Potent, Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) for the Treatment of Estrogen Receptor Positive Breast Cancer

    No full text
    In breast cancer, estrogen receptor alpha (ERα) positive cancer accounts for approximately 74% of all diagnoses, and in these settings, it is a primary driver of cell proliferation. Treatment of ERα positive breast cancer has long relied on endocrine therapies such as selective estrogen receptor modulators, aromatase inhibitors, and selective estrogen receptor degraders (SERDs). The steroid-based anti-estrogen fulvestrant (<b>5</b>), the only approved SERD, is effective in patients who have not previously been treated with endocrine therapy as well as in patients who have progressed after receiving other endocrine therapies. Its efficacy, however, may be limited due to its poor physicochemical properties. We describe the design and synthesis of a series of potent benzothiophene-containing compounds that exhibit oral bioavailability and preclinical activity as SERDs. This article culminates in the identification of LSZ102 (<b>10</b>), a compound in clinical development for the treatment of ERα positive breast cancer

    Discovery of LSZ102, a Potent, Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) for the Treatment of Estrogen Receptor Positive Breast Cancer

    No full text
    In breast cancer, estrogen receptor alpha (ERα) positive cancer accounts for approximately 74% of all diagnoses, and in these settings, it is a primary driver of cell proliferation. Treatment of ERα positive breast cancer has long relied on endocrine therapies such as selective estrogen receptor modulators, aromatase inhibitors, and selective estrogen receptor degraders (SERDs). The steroid-based anti-estrogen fulvestrant (<b>5</b>), the only approved SERD, is effective in patients who have not previously been treated with endocrine therapy as well as in patients who have progressed after receiving other endocrine therapies. Its efficacy, however, may be limited due to its poor physicochemical properties. We describe the design and synthesis of a series of potent benzothiophene-containing compounds that exhibit oral bioavailability and preclinical activity as SERDs. This article culminates in the identification of LSZ102 (<b>10</b>), a compound in clinical development for the treatment of ERα positive breast cancer
    corecore