10 research outputs found

    Rhizobacterial application for sustainable water management on the areas of limited water resources

    Get PDF
    A key challenge for plant growth is global water shortage, limiting crop yields already today in more than 70% of arable lands. The drought limitations further gain in importance in the near future as agricultural activities expand to less fertile areas to satisfy growing demands for food. Accordingly, novel solutions for plant survival and growth under restricted water availability are of central significance in contemporary plant science. Rhizobacterial ability to increase plant growth and provide protection to various pathogens has been frequently reported and applied in agricultural systems. Relatively few reports have been published on the bacterial ability to induce drought stress tolerance. Application of the isolates to-gether with novel technologies for their monitoring can contribute to solving food security issues in the changing climates

    <em>Paenibacillus polymyxa</em> A26 and Its Surfactant-Deficient Mutant Degradation of Polycyclic Aromatic Hydrocarbons

    No full text
    We compared the ability of two bacterial strains, Paenibacillus polymyxa A26 and P. polymyxa A26Sfp, for biodegradation of naphthalene (NAP). The studies were performed under simulated laboratory conditions, in liquid medium and soil with different carbon sources, pH and salt contents. Changes in the luminescence inhibition of Aliivibrio fischeri, as an indicator of the baseline toxicity, were observed in degradation mixtures during 7 days of incubation. While both strains expressed the best growth and NAP degradation ability in the minimal salt medium containing sucrose and 5% NaCl at pH 7 and 8, the mutant strain remained effective even under extreme conditions. A26Sfp was found to be an efficient and potentially industrially important polycyclic aromatic hydrocarbon degradation strain. Its extracellular polysaccharide production is 30%, and glucan production is twice that of the wild type A 26. The surface tension reduction ability was ascertained as 25–30% increased emulsification ability

    Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments

    Get PDF
    Water is the key resource limiting world agricultural production. Although an impressive number of research reports have been published on plant drought tolerance enhancement via genetic modifications during the last few years, progress has been slower than expected. We suggest a feasible alternative strategy by application of rhizospheric bacteria coevolved with plant roots in harsh environments over millions of years, and harboring adaptive traits improving plant fitness under biotic and abiotic stresses. We show the effect of bacterial priming on wheat drought stress tolerance enhancement, resulting in up to 78% greater plant biomass and five-fold higher survivorship under severe drought. We monitored emissions of seven stress-related volatiles from bacterially-primed drought-stressed wheat seedlings, and demonstrated that three of these volatiles are likely promising candidates for a rapid non-invasive technique to assess crop drought stress and its mitigation in early phases of stress development. We conclude that gauging stress by elicited volatiles provides an effectual platform for rapid screening of potent bacterial strains and that priming with isolates of rhizospheric bacteria from harsh environments is a promising, novel way to improve plant water use efficiency. These new advancements importantly contribute towards solving food security issues in changing climates

    Enhancement of wheat (<i>Triticum aestivum</i>) drought tolerance by <i>Bacillus thuringiensis</i> AZP2 and <i>Paenibacillus polymyxa</i> B in sand soil.

    No full text
    <p>Panel A demonstrates the effect of AZP2 and B priming on seedlings survival after a severe 10-day drought stress episode. Panel B shows the effect of AZP2 priming on whole plant dry mass after 8 days growth without watering. The statistical analysis in (A) is based on a three-way ANOVA (stress, strains (i.e. AZP2 and B) and stress exposure time). ANOVA was conducted on two plant groups with 16 replicates in each group. *** indicate highly significant effects for the tested factor at <i>P≤</i>0.01. In B, eight independent experiments were performed, and treatments labelled with the same letter are not significantly different at <i>P≤</i>0.01.</p

    Temporal variations in the emission rates of some benzenoids and terpenoids emitted by wheat plants.

    No full text
    <p>Benzaldehyde (A), β-pinene (B) and geranyl acetone (C) emission rates from leaves of drought-stressed (0, 2, 5, 8 and 10 days without water) wheat plants after priming with <i>Bacillus thuringiensis</i> AZP2 are demonstrated. The error bars indicate +SE for three biological replicates. Statistical analysis and levels of significance as in Fig. 4.</p

    Effect of priming by <i>Bacillus thuringiensis</i> AZP2 on wheat <i>(Triticum aestivum L. cv. Stava)</i> on average (±SD) growth characteristics, water use efficiency and antioxidant enzyme activities.

    No full text
    1<p>Analysis of plant root was conducted by Root Reader3D Imaging and Analysis System and manually <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0096086#pone.0096086-Niinemets1" target="_blank">[7]</a>.</p>2<p>Twelve plants per treatment were sampled. Roots with adhering soil (RAS) were carefully separated from bulk soil by shaking. Soil and root dry mass (RT) was recorded after drying the samples at 105°C, and RAS/RT ratio was calculated.</p>3<p>Twelve plants were carefully separated from soil by shaking followed by washing the roots in distilled water and left to drain in Petri dishes with water to maintain humidity. Root system characteristics were evaluated by Zeiss LSM 710 microscope.</p>4<p>Water use efficiency is defined as the ratio of total plant dry mass per total water used.</p>5<p>MDHAR - Monodehydroascorbate reductase, GR- Glutathione reductase, SOD- Superoxide dismutase, CAT-Catalase.</p><p>See Materials and Methods for enzyme extraction and activity measurements.</p><p>*Means followed by the same letter are not significantly different at p≤0.01. See Experimental procedures.</p

    Net assimilation rate (A) and stomatal conductance (B) of <i>Bacillus thuringiensis</i> AZP2-primed wheat seedlings under drought stress.

    No full text
    <p>The data are shown for plants grown for 0, 2, 5, 8 and 10 days without water. The error bars indicate +SE for three biological replicates. Statistical analysis is based on three-way ANOVA with stress, strains (<i>Bacillus thuringiensis</i> AZP2 vs. <i>P. polymyxa</i> B) and stress exposure time as factors. ***, ** and ns, indicate highly significant, significant or non-significant effects for the tested factor at <i>P<</i>0.05.</p
    corecore