1 research outputs found

    Aerosol Cross-Linked Crown Ether Diols Melded with Poly(vinyl alcohol) as Specialized Microfibrous Li<sup>+</sup> Adsorbents

    No full text
    Crown ether (CE)-based Li<sup>+</sup> adsorbent microfibers (MFs) were successfully fabricated through a combined use of CE diols, electrospinning, and aerosol cross-linking. The 14- to 16-membered CEs, with varied ring subunits and cavity dimensions, have two hydroxyl groups for covalent attachments to poly­(vinyl alcohol) (PVA) as the chosen matrix. The CE diols were blended with PVA and transformed into microfibers via electrospinning, a highly effective technique in minimizing CE loss during MF fabrication. Subsequent aerosol glutaraldehyde (GA) cross-linking of the electrospun CE/PVA MFs stabilized the adsorbents in water. The aerosol technique is highly effective in cross-linking the MFs at short time (5 h) with minimal volume requirement of GA solution (2.4 mL g<sup>–1</sup> MF). GA cross-linking alleviated CE leakage from the fibers as the CEs were securely attached with PVA through covalent CE–GA–PVA linkages. Three types of CE/PVA MFs were fabricated and characterized through Fourier transform infrared-attenuated total reflection, <sup>13</sup>C cross-polarization magic angle spinning NMR, field emission scanning electron microscope, N<sub>2</sub> adsorption/desorption, and universal testing machine. The MFs exhibited pseudo-second-order rate and Langmuir-type Li<sup>+</sup> adsorption. At their saturated states, the MFs were able to use 90–99% CEs for 1:1 Li<sup>+</sup> complexation, suggesting favorability of their microfibrous structures for CE accessibility to Li<sup>+</sup>. The MFs were highly Li<sup>+</sup>-selective in seawater. Neopentyl-bearing CE was most effective in blocking larger monovalents Na<sup>+</sup> and K<sup>+</sup>, whereas the dibenzo CE was best in discriminating divalents Mg<sup>2+</sup> and Ca<sup>2+</sup>. Experimental selectivity trends concur with the reaction enthalpies from density functional theory calculations, confirming the influence of CE structures and cavity dimensions in their “size-match” Li<sup>+</sup> selectivity
    corecore