863 research outputs found

    Comments on Condensates in Non-Supersymmetric Orbifold Field Theories

    Get PDF
    Non-supersymmetric orbifolds of N=1 super Yang-Mills theories are conjectured to inherit properties from their supersymmetric parent. We examine this conjecture by compactifying the Z_2 orbifold theories on a spatial circle of radius R. We point out that when the orbifold theory lies in the weakly coupled vacuum of its parent, fractional instantons do give rise to the conjectured condensate of bi-fundamental fermions. Unfortunately, we show that quantum effects render this vacuum unstable through the generation of twisted operators. In the true vacuum state, no fermion condensate forms. Thus, in contrast to super Yang-Mills, the compactified orbifold theory undergoes a chiral phase transition as R is varied.Comment: 10 Pages. Added clarifying comments, computational steps and a nice pretty pictur

    Rapid X-ray Variability of Seyfert 1 Galaxies

    Full text link
    The rapid and seemingly random fluctuations in X-ray luminosity of Seyfert galaxies provided early support for the standard model in which Seyferts are powered by a supermassive black hole fed from an accretion disc. However, since EXOSAT there has been little opportunity to advance our understanding of the most rapid X-ray variability. Observations with XMM-Newton have changed this. We discuss some recent results obtained from XMM-Newton observations of Seyfert 1 galaxies. Particular attention will be given to the remarkable similarity found between the timing properties of Seyferts and black hole X-ray binaries, including the power spectrum and the cross spectrum (time delays and coherence), and their implications for the physical processes at work in Seyferts.Comment: To appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    From Fake Supergravity to Superstars

    Get PDF
    The fake supergravity method is applied to 5-dimensional asymptotically AdS spacetimes containing gravity coupled to a real scalar and an abelian gauge field. The motivation is to obtain bulk solutions with R x S^3 symmetry in order to explore the AdS/CFT correspondence when the boundary gauge theory is on R x S^3. A fake supergravity action, invariant under local supersymmetry through linear order in fermion fields, is obtained. The gauge field makes things more restrictive than in previous applications of fake supergravity which allowed quite general scalar potentials. Here the superpotential must take the form W(\phi) ~ exp(-k\phi) + c exp(2\phi/(3k)), and the only freedom is the choice of the constant k. The fermion transformation rules of fake supergravity lead to fake Killing spinor equations. From their integrability conditions, we obtain first order differential equations which we solve analytically to find singular electrically charged solutions of the Lagrangian field equations. A Schwarzschild mass term can be added to produce a horizon which shields the singularity. The solutions, which include "superstars", turn out to be known in the literature. We compute their holographic parameters.Comment: 42 pages, 3 figure

    A perspective on the landscape problem

    Full text link
    I discuss the historical roots of the landscape problem and propose criteria for its successful resolution. This provides a perspective to evaluate the possibility to solve it in several of the speculative cosmological scenarios under study including eternal inflation, cosmological natural selection and cyclic cosmologies.Comment: Invited contribution for a special issue of Foundations of Physics titled: Forty Years Of String Theory: Reflecting On the Foundations. 31 pages, no figure

    Quotients of AdS_{p+1} x S^q: causally well-behaved spaces and black holes

    Full text link
    Starting from the recent classification of quotients of Freund--Rubin backgrounds in string theory of the type AdS_{p+1} x S^q by one-parameter subgroups of isometries, we investigate the physical interpretation of the associated quotients by discrete cyclic subgroups. We establish which quotients have well-behaved causal structures, and of those containing closed timelike curves, which have interpretations as black holes. We explain the relation to previous investigations of quotients of asymptotically flat spacetimes and plane waves, of black holes in AdS and of Godel-type universes.Comment: 48 pages; v2: minor typos correcte

    Failing boys and moral panics: perspectives on the underachievement debate

    Get PDF
    The paper re-examines the underachievement debate from the perspective of the ‘discourse of derision’ that surrounds much writing in this area. It considers the contradictions and inconsistencies which underpin much of the discourse – from a reinterpretation of examination scores, to the conflation of the concepts of ‘under’ and ‘low’ achievement and finally to the lack of consensus on a means of defining and measuring the term underachievement. In doing so, this paper suggests a more innovative approach for understanding, re-evaluating and perhaps rejecting the notion of underachievement

    Observing Supermassive Black Holes across cosmic time: from phenomenology to physics

    Full text link
    In the last decade, a combination of high sensitivity, high spatial resolution observations and of coordinated multi-wavelength surveys has revolutionized our view of extra-galactic black hole (BH) astrophysics. We now know that supermassive black holes reside in the nuclei of almost every galaxy, grow over cosmological times by accreting matter, interact and merge with each other, and in the process liberate enormous amounts of energy that influence dramatically the evolution of the surrounding gas and stars, providing a powerful self-regulatory mechanism for galaxy formation. The different energetic phenomena associated to growing black holes and Active Galactic Nuclei (AGN), their cosmological evolution and the observational techniques used to unveil them, are the subject of this chapter. In particular, I will focus my attention on the connection between the theory of high-energy astrophysical processes giving rise to the observed emission in AGN, the observable imprints they leave at different wavelengths, and the methods used to uncover them in a statistically robust way. I will show how such a combined effort of theorists and observers have led us to unveil most of the SMBH growth over a large fraction of the age of the Universe, but that nagging uncertainties remain, preventing us from fully understating the exact role of black holes in the complex process of galaxy and large-scale structure formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and Treves A. (Eds), 2015, Springer International Publishing AG, Cha

    Small-scale solar magnetic fields

    Get PDF
    As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
    • 

    corecore