5,447 research outputs found

    Geometric model from microscopic theory for nuclear absorption

    Get PDF
    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained

    Fully energy-dependent HZETRN (a galactic cosmic-ray transport code)

    Get PDF
    For extended manned space missions, the radiation shielding design requires efficient and accurate cosmic-ray transport codes that can handle the physics processes in detail. The Langley Research Center galactic cosmic-ray transport code (HZETRN) is currently under development for such design use. The cross sections for the production of secondary nucleons in the existing HZETRN code are energy dependent only for nucleon collisions. The approximation of energy-independent, heavy-ion fragmentation cross section is now removed by implementing a mathematically simplified energy-dependent stepping formalism for heavy ions. The cross section at each computational grid is obtained by linear interpolation from a few tabulated data to minimize computing time. Test runs were made for galactic cosmic-ray transport through a liquid hydrogen shield and a water shield at solar minimum. The results show no appreciable change in total fluxes or computing time compared with energy-independent calculations. Differences in high LET (linear energy transfer) spectra are noted, however, because of the large variation in cross sections at the low-energy region. The high LET components are significantly higher in the new code and have important implications on biological risk estimates for heavy-ion exposure

    The Status of the United States Population of Night Shark, Carcharhinus signatus

    Get PDF
    Night sharks, Carcharhinus signatus, are an oceanic species generally occurring in outer continental shelf waters in the western North Atlantic Ocean including the Caribbean Sea and Gulf of Mexico. Although not targeted, night sharks make up a segment of the shark bycatch in the pelagic longline fishery. Historically, night sharks comprised a significant proportion of the artisanal Cuban shark fishery but today they are rarely caught. Although information from some fisheries has shown a decline in catches of night sharks, it is unclear whether this decline is due to changes in fishing tactics, market, or species identification. Despite the uncertainty in the decline, the night shark is currently listed as a species of concern due to alleged declines in abundance resulting from fishing effort, i.e. overutilization. To assess their relevance to the species of concern list, we collated available information on the night shark to provide an analysis of its status. Night shark landings were likely both over- and under-reported and thus probably did not reflect all commercial and recreational catches, and overall they have limited relevance to the current status of the species. Average size information has not changed considerably since the 1980’s based on information from the pelagic longline fishery when corrected for gear bias. Analysis of biological information indicates night sharks have intrinsic rates of increase (r) about 10% yr–1 and have moderate rebound potential and an intermediate generation time compared to other sharks. An analysis of trends in relative abundance from four data sources gave conflicting results, with one series in decline, two series increasing, and one series relatively flat. Based on the analysis of all currently available information, we believe the night shark does not qualify as a species of concern but should be retained on the prohibited species list as a precautionary approach to management until a more comprehensive stock assessment can be conducted

    Successful treatment of a T4 lung tumor with vertebral body invasion using fiducial markers in the thoracic spine for image-guided radiation therapy: A case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Paravertebral and paraspinal tumors pose a significant challenge in radiation therapy because of the radiation sensitivity of the spinal cord and the need for maximum treatment accuracy. Implantation of fiducial markers into vertebral bodies has been described as a method of increasing the accuracy of radiation treatment for single-dose stereotactic radiosurgery for spinal and paraspinal primary tumors and metastases. However, utilization of this technique has not been described for conventionally fractionated radiation therapy. This report is the first of its kind in the literature and describes successful treatment of a T4 primary lung tumor with vertebral body invasion with conventionally fractionated, image-guided radiotherapy using fiducial markers implanted in the thoracic spine.</p> <p>Case presentation</p> <p>Our patient was a 47-year-old African-American man who presented to our hospital with a history of several months of increasing left arm pain, chest pain, dyspnea on exertion, occasional dry cough, and weight loss. He was found to have stage IIIA T4, N0, M0 lung cancer with vertebral body invasion. He had fiducial markers placed in the thoracic spine for image-guided radiation treatment set-up. The patient received 74 Gy radiation therapy with concurrent chemotherapy, and daily matching of the fiducial markers on the treatment machine allowed for treatment of the tumor while sparing the dose to the adjacent spinal cord. With one year of clinical follow-up, the patient has had regression of the tumor with only asymmetric soft-tissue thickening seen on a computed tomographic scan and grade 1 dyspnea on exertion as the only side effects of the treatment.</p> <p>Conclusion</p> <p>Fiducial marker placement is a safe and effective technique for maximizing the accuracy and reproducibility for radiation treatment of lesions near the spinal cord. This technique may be used in conventionally fractionated radiation treatment regimens, such as those employed to treat a lung tumor with vertebral body invasion, to potentially improve clinical outcomes for patients.</p

    Growth Bands in Test Plates of the Sea Urchins Arbacia punctulata and Lytechinus variegatus (Echinodermata) on the Central Florida Gulf Coast Shelf

    Get PDF
    Growth bands in test plates provide information about the biology and ecology of sea urchins. We documented the bands in the test plates of Arbacia punctulata and Lytechinus variegatus at different seasons and locations on the central Florida Gulf Coast shelf. The number of growth bands in test plates is significantly correlated with test diameter for A. punctulata. The number of growth bands is not significantly correlated with test diameter for L. variegatus. The condition of the outermost growth band was recorded along with the month and reproductive state to investigate the effect of variation in reproduction and temperature on growth. Growth bands in A. punctulata are well defined and appear to be related to the reproductive cycle. Growth bands in L. variegatus are less well defined and may be more closely related to food availability

    Substructure around M31 : Evolution and Effects

    Get PDF
    We investigate the evolution of a population of 100 dark matter satellites orbiting in the gravitational potential of a realistic model of M31. We find that after 10 Gyr, seven subhalos are completely disrupted by the tidal field of the host galaxy. The remaining satellites suffer heavy mass loss and overall, 75% of the mass initially in the subhalo system is tidally stripped. Not surprisingly, satellites with pericentric radius less than 30 kpc suffer the greatest stripping and leave a complex structure of tails and streams of debris around the host galaxy. Assuming that the most bound particles in each subhalo are kinematic tracers of stars, we find that the halo stellar population resulting from the tidal debris follows an r^{-3.5} density profile at large radii. We construct B-band photometric maps of stars coming from disrupted satellites and find conspicuous features similar both in morphology and brightness to the observed Giant Stream around Andromeda. An assumed star formation efficiency of 5-10% in the simulated satellite galaxies results in good agreement with the number of M31 satellites, the V-band surface brightness distribution, and the brightness of the Giant Stream. During the first 5 Gyr, the bombardment of the satellites heats and thickens the disk by a small amount. At about 5 Gyr, satellite interations induce the formation of a strong bar which, in turn, leads to a significant increase in the velocity dispersion of the disk.Comment: 45 pages, 18 figures. To be submitted to the Astrophysical Journal, version 2.0 : scale height value corrected, references added, and some figures have been modifie

    Hierarchical Distributed Representations for Statistical Language Modeling

    Get PDF
    Statistical language models estimate the probability of a word occurring in a given context. The most common language models rely on a discrete enumeration of predictive contexts (e.g., n-grams) and consequently fail to capture and exploit statistical regularities across these contexts. In this paper, we show how to learn hierarchical, distributed representations of word contexts that maximize the predictive value of a statistical language model. The representations are initialized by unsupervised algorithms for linear and nonlinear dimensionality reduction [14], then fed as input into a hierarchical mixture of experts, where each expert is a multinomial distribution over predicted words [12]. While the distributed representations in our model are inspired by the neural probabilistic language model of Bengio et al. [2, 3], our particular architecture enables us to work with significantly larger vocabularies and training corpora. For example, on a large-scale bigram modeling task involving a sixty thousand word vocabulary and a training corpus of three million sentences, we demonstrate consistent improvement over class-based bigram models [10, 13]. We also discuss extensions of our approach to longer multiword contexts

    The AMSC mobile satellite system

    Get PDF
    The American Mobile Satellite Consortium (AMSC) Mobile Satellite Service (MSS) system is described. AMSC will use three multi-beam satellites to provide L-band MSS coverage to the United States, Canada and Mexico. The AMSC MSS system will have several noteworthy features, including a priority assignment processor that will ensure preemptive access to emergency services, a flexible SCPC channel scheme that will support a wide diversity of services, enlarged system capacity through frequency and orbit reuse, and high effective satellite transmitted power. Each AMSC satellite will make use of 14 MHz (bi-directional) of L-band spectrum. The Ku-band will be used for feeder links

    Mobile satellite service in the United States

    Get PDF
    Mobile satellite service (MSS) has been under development in the United States for more than two decades. The service will soon be provided on a commercial basis by a consortium of eight U.S. companies called the American Mobile Satellite Consortium (AMSC). AMSC will build a three-satellite MSS system that will offer superior performance, reliability and cost effectiveness for organizations requiring mobile communications across the U.S. The development and operation of MSS in North America is being coordinated with Telesat Canada and Mexico. AMSC expects NASA to provide launch services in exchange for capacity on the first AMSC satellite for MSAT-X activities and for government demonstrations
    corecore