10,565 research outputs found

    Dynamics of Rotating Multi-component Turbomachinery Systems

    Get PDF
    The ultimate objective of turbomachinery vibration analysis is to predict both the overall, as well as component dynamic response. To accomplish this objective requires complete engine structural models, including multistages of bladed disk assemblies, flexible rotor shafts and bearings, and engine support structures and casings. In the present approach each component is analyzed as a separate structure and boundary information is exchanged at the inter-component connections. The advantage of this tactic is that even though readily available detailed component models are utilized, accurate and comprehensive system response information may be obtained. Sample problems, which include a fixed base rotating blade and a blade on a flexible rotor, are presented

    Structural dynamics branch research and accomplishments to FY 1992

    Get PDF
    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications

    Granuloma annulare: not as simple as it seems.

    Get PDF

    Characterization of structural connections using free and forced response test data

    Get PDF
    The accurate prediction of system dynamic response often has been limited by deficiencies in existing capabilities to characterize connections adequately. Connections between structural components often are complex mechanically, and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic preditions. A procedure for identifying physical connection properties from free and forced response test data is developed, then verified utilizing a system having both a linear and nonlinear connection. Connection properties are computed in terms of physical parameters so that the physical characteristics of the connections can better be understood, in addition to providing improved input for the system model. The identification procedure is applicable to multi-degree of freedom systems, and does not require that the test data be measured directly at the connection locations

    Structural Design Concepts for a Multi-Megawatt Solar Electric Propulsion (SEP) Spacecraft

    Get PDF
    As a part of the Space Exploratory Initiative (SEI), NASA-Lewis is studying Solar Electric Propulsion (SEP) spacecraft to be used as a cargo transport vehicle to Mars. Two preliminary structural design concepts are offered for SEP spacecraft: a split blanket array configuration, and a ring structure. The split blanket configuration is an expansion of the photovoltaic solar array design proposed for Space Station Freedom and consists of eight independent solar blankets stretched and supported from a central mast. The ring structural concept is a circular design with the solar blanket stretched inside a ring. This concept uses a central mast with guy wires to provide additional support to the ring. The two design concepts are presented, then compared by performing stability, normal modes, and forced response analyses for varying levels of blanket and guy wire preloads. The ring structure configuration is shown to be advantageous because it is much stiffer, more stable, and deflects less under loading than the split blanket concept

    Hub flexibility effects on propfan vibration

    Get PDF
    The significance of hub flexibility in the nonlinear static and dynamic analyses of advanced turboprop blades is assessed. The chosen blade is the 0.175 scale model of the GE-A7-B4 unducted fan blade. A procedure for coupling the effective hub stiffness matrix to an MSC/NASTRAN finite element model is defined and verified. A series of nonlinear static and dynamic analyses are conducted on the blade for both rigid and flexible hug configurations. Results indicate that hub flexibility is significant in the nonlinear static and dynamic analyses of the GE-A7-B4. In order to insure accuracy in analyses of other blades, hub flexibility should always be considered

    A global approach for the identification of structural connection properties

    Get PDF
    A general procedure is developed for identifying properties of structural joints. The procedure, which uses experimental response data, is considered general because it is applicable to any size or type of structural system. The present procedure, which identifies characteristics such as damping and stiffness, accommodates both linear and nonlinear joint properties and may process test data measured at arbitrary stations on the structural system. The method identifies joint characteristics by performing a global fit between predicted and measured data. It overcomes limitations of previous methods in that it can better deal with parameter-dependent constraints (e.g., gaps). The method is demonstrated with a simplified model of a bladed disk assembly having friction damping and mistuning

    Inverse kinematics problem in robotics using neural networks

    Get PDF
    In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods
    corecore