74 research outputs found

    Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: A case study in endemic districts of Bhutan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria still remains a public health problem in some districts of Bhutan despite marked reduction of cases in last few years. To strengthen the country's prevention and control measures, this study was carried out to develop forecasting and prediction models of malaria incidence in the endemic districts of Bhutan using time series and ARIMAX.</p> <p>Methods</p> <p>This study was carried out retrospectively using the monthly reported malaria cases from the health centres to Vector-borne Disease Control Programme (VDCP) and the meteorological data from Meteorological Unit, Department of Energy, Ministry of Economic Affairs. Time series analysis was performed on monthly malaria cases, from 1994 to 2008, in seven malaria endemic districts. The time series models derived from a multiplicative seasonal autoregressive integrated moving average (ARIMA) was deployed to identify the best model using data from 1994 to 2006. The best-fit model was selected for each individual district and for the overall endemic area was developed and the monthly cases from January to December 2009 and 2010 were forecasted. In developing the prediction model, the monthly reported malaria cases and the meteorological factors from 1996 to 2008 of the seven districts were analysed. The method of ARIMAX modelling was employed to determine predictors of malaria of the subsequent month.</p> <p>Results</p> <p>It was found that the ARIMA (p, d, q) (P, D, Q)<sup>s </sup>model (p and P representing the auto regressive and seasonal autoregressive; d and D representing the non-seasonal differences and seasonal differencing; and q and Q the moving average parameters and seasonal moving average parameters, respectively and s representing the length of the seasonal period) for the overall endemic districts was (2,1,1)(0,1,1)<sup>12</sup>; the modelling data from each district revealed two most common ARIMA models including (2,1,1)(0,1,1)<sup>12 </sup>and (1,1,1)(0,1,1)<sup>12</sup>. The forecasted monthly malaria cases from January to December 2009 and 2010 varied from 15 to 82 cases in 2009 and 67 to 149 cases in 2010, where population in 2009 was 285,375 and the expected population of 2010 to be 289,085. The ARIMAX model of monthly cases and climatic factors showed considerable variations among the different districts. In general, the mean maximum temperature lagged at one month was a strong positive predictor of an increased malaria cases for four districts. The monthly number of cases of the previous month was also a significant predictor in one district, whereas no variable could predict malaria cases for two districts.</p> <p>Conclusions</p> <p>The ARIMA models of time-series analysis were useful in forecasting the number of cases in the endemic areas of Bhutan. There was no consistency in the predictors of malaria cases when using ARIMAX model with selected lag times and climatic predictors. The ARIMA forecasting models could be employed for planning and managing malaria prevention and control programme in Bhutan.</p

    Malaria Elimination in the Greater Mekong Subregion: Challenges and Prospects

    Get PDF
    Malaria is a significant public health problem and impediment to socioeconomic development in countries of the Greater Mekong Subregion (GMS), which comprises Cambodia, China’s Yunnan Province, Lao People’s Democratic Republic, Myanmar, Thailand, and Vietnam. Over the past decade, intensified malaria control has greatly reduced the regional malaria burden. Driven by increasing political commitment, motivated by recent achievements in malaria control, and urged by the imminent threat of emerging artemisinin resistance, the GMS countries have endorsed a regional malaria elimination plan with a goal of eliminating malaria by 2030. However, this ambitious, but laudable, goal faces a daunting array of challenges and requires integrated strategies tailored to the region, which should be based on a mechanistic understanding of the human, parasite, and vector factors sustaining continued malaria transmission along international borders. Malaria epidemiology in the GMS is complex and rapidly evolving. Spatial heterogeneity requires targeted use of the limited resources. Border malaria accounts for continued malaria transmission and represents sources of parasite introduction through porous borders by highly mobile human populations. Asymptomatic infections constitute huge parasite reservoir requiring interventions in time and place to pave the way for malaria elimination. Of the two most predominant malaria parasites, Plasmodium falciparum and P. vivax, the prevalence of the latter is increasing in most member GMS countries. This parasite requires the use of 8-aminoquinoline drugs to prevent relapses from liver hypnozoites, but high prevalence of glucose-6-phosphate dehydrogenase deficiency in the endemic human populations makes it difficult to adopt this treatment regimen. The recent emergence of resistance to artemisinins and partner drugs in P. falciparum has raised both regional and global concerns, and elimination efforts are invariably prioritized against this parasite to avert spread. Moreover, the effectiveness of the two core vector control interventions—insecticide-treated nets and indoor residual spraying—has been declining due to insecticide resistance and increased outdoor biting activity of mosquito vectors. These technical challenges, though varying from country to country, require integrated approaches and better understanding of the malaria epidemiology enabling targeted control of the parasites and vectors. Understanding the mechanism and distribution of drug-resistant parasites will allow effective drug treatment and prevent, or slow down, the spread of drug resistance. Coordination among the GMS countries is essential to prevent parasite reintroduction across the international borders to achieve regional malaria elimination

    Advantages of using voiced questionnaire and image capture application for data collection from a minority group in rural areas along the Thailand–Myanmar border

    Get PDF
    Aims To compare the quality of data collection via electronic data capture (EDC) with voiced questionnaire (QNN) and data image capture features using a tablet versus standard paper-based QNN, to assess the user’s perception of using the EDC tool, and to compare user satisfaction with the two methods.Study design Randomised cross-over study.Study sites This study was conducted in two villages along the Thailand– Myanmar border.Methodology This study included 30 community health volunteers (CHVs) and 120 Karen hill tribe villagers. Employing a cross-over study design, the CHVs were allocated randomly to two groups, in which they performed interviews in different sequences using EDC and QNN.Results Data discrepancies were found between the two data-collection methods, when data from the paper-based and image-capture methods were compared, and when conducting skip pattern questions. More than 90% of the CHVs perceived the EDC to be useful and easy to use. Both interviewers and interviewees were more satisfied with the EDC compared with QNN in terms of format, ease of use, and system speed.Conclusion The EDC can effectively be used as an alternative method to paperbased QNNs for data collection. It produces more accurate data that can be considered evidence-based

    Spatiotemporal Epidemiology of Tuberculosis in Thailand from 2011 to 2020

    Get PDF
    Tuberculosis is a leading cause of infectious disease globally, especially in developing countries. Better knowledge of spatial and temporal patterns of tuberculosis burden is important for effective control programs as well as informing resource and budget allocation. Studies have demonstrated that TB exhibits highly complex dynamics in both spatial and temporal dimensions at different levels. In Thailand, TB research has been primarily focused on surveys and clinical aspects of the disease burden with little attention on spatiotemporal heterogeneity. This study aimed to describe temporal trends and spatial patterns of TB incidence and mortality in Thailand from 2011 to 2020. Monthly TB case and death notification data were aggregated at the provincial level. Age-standardized incidence and mortality were calculated; time series and global and local clustering analyses were performed for the whole country. There was an overall decreasing trend with seasonal peaks in the winter. There was spatial heterogeneity with disease clusters in many regions, especially along international borders, suggesting that population movement and socioeconomic variables might affect the spatiotemporal distribution in Thailand. Understanding the space-time distribution of TB is useful for planning targeted disease control program activities. This is particularly important in low- and middle-income countries including Thailand to help prioritize allocation of limited resources

    Directly-observed therapy (DOT) for the radical 14-day primaquine treatment of Plasmodium vivax malaria on the Thai-Myanmar border

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium vivax </it>has a dormant hepatic stage, called the hypnozoite, which can cause relapse months after the initial attack. For 50 years, primaquine has been used as a hypnozoitocide to radically cure <it>P. vivax </it>infection, but major concerns remain regarding the side-effects of the drug and adherence to the 14-day regimen. This study examined the effectiveness of using the directly-observed therapy (DOT) method for the radical treatment of <it>P. vivax </it>malaria infection, to prevent reappearance of the parasite within the 90-day follow-up period. Other potential risk factors for the reappearance of <it>P. vivax </it>were also explored.</p> <p>Methods</p> <p>A randomized trial was conducted from May 2007 to January 2009 in a low malaria transmission area along the Thai-Myanmar border. Patients aged ≥ 3 years diagnosed with <it>P. vivax </it>by microscopy, were recruited. All patients were treated with the national standard regimen of chloroquine for three days followed by primaquine for 14 days. Patients were randomized to receive DOT or self-administered therapy (SAT). All patients were followed for three months to check for any reappearance of <it>P. vivax</it>.</p> <p>Results</p> <p>Of the 216 patients enrolled, 109 were randomized to DOT and 107 to SAT. All patients recovered without serious adverse effects. The vivax reappearance rate was significantly lower in the DOT group than the SAT group (3.4/10,000 person-days vs. 13.5/10,000 person-days, <it>p </it>= 0.021). Factors related to the reappearance of vivax malaria included inadequate total primaquine dosage received (< 2.75 mg/kg), duration of fever ≤ 2 days before initiation of treatment, parasite count on admission ≥ 10,000/µl, multiple <it>P. vivax</it>-genotype infection, and presence of <it>P. falciparum </it>infection during the follow-up period.</p> <p>Conclusions</p> <p>Adherence to the 14-day primaquine regimen is important for the radical cure of <it>P. vivax </it>malaria infection. Implementation of DOT reduces the reappearance rate of the parasite, and may subsequently decrease <it>P. vivax </it>transmission in the area.</p

    Spatio-temporal patterns of malaria infection in Bhutan: a country embarking on malaria elimination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>At the verge of elimination of malaria in Bhutan, this study was carried out to analyse the trend of malaria in the endemic districts of Bhutan and to identify malaria clusters at the sub-districts. The findings would aid in implementing the control activities. Poisson regression was performed to study the trend of malaria incidences at district level from 1994 to 2008. Spatial Empirical Bayesian smoothing was deployed to identify clusters of malaria at the sub-district level from 2004 to 2008.</p> <p>Results</p> <p>Trend of the overall districts and most of the endemic districts have decreased except Pemagatshel, which has an increase in the trend. Spatial cluster-outlier analysis showed that malaria clusters were mostly concentrated in the central and eastern Bhutan in three districts of Dagana, Samdrup Jongkhar and Sarpang. The disease clusters were reported throughout the year. Clusters extended to the non-transmission areas in the eastern Bhutan.</p> <p>Conclusions</p> <p>There is significant decrease in the trend of malaria with the elimination at the sight. The decrease in the trend can be attributed to the success of the control and preventive measures. In order to realize the target of elimination of malaria, the control measure needs to be prioritized in these high-risk clusters of malaria.</p

    Optimally timing primaquine treatment to reduce Plasmodium falciparum transmission in low endemicity Thai-Myanmar border populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective malaria control has successfully reduced the malaria burden in many countries, but to eliminate malaria, these countries will need to further improve their control efforts. Here, a malaria control programme was critically evaluated in a very low-endemicity Thai-Myanmar border population, where early detection and prompt treatment have substantially reduced, though not ended, <it>Plasmodium falciparum </it>transmission, in part due to carriage of late-maturing gametocytes that remain post-treatment. To counter this effect, the WHO recommends the use of a single oral dose of primaquine along with an effective blood schizonticide. However, while the effectiveness of primaquine as a gametocidal agent is widely documented, the mismatch between primaquine's short half-life, the long-delay for gametocyte maturation and the proper timing of primaquine administration have not been studied.</p> <p>Methods</p> <p>Mathematical models were constructed to simulate 8-year surveillance data, between 1999 and 2006, of seven villages along the Thai-Myanmar border. A simple model was developed to consider primaquine pharmacokinetics and pharmacodynamics, gametocyte carriage, and infectivity.</p> <p>Results</p> <p>In these populations, transmission intensity is very low, so the <it>P. falciparum </it>parasite rate is strongly linked to imported malaria and to the fraction of cases not treated. Given a 3.6-day half-life of gametocyte, the estimated duration of infectiousness would be reduced by 10 days for every 10-fold reduction in initial gametocyte densities. Infectiousness from mature gametocytes would last two to four weeks and sustain some transmission, depending on the initial parasite densities, but the residual mature gametocytes could be eliminated by primaquine. Because of the short half-life of primaquine (approximately eight hours), it was immediately obvious that with early administration (within three days after an acute attack), primaquine would not be present when mature gametocytes emerged eight days after the appearance of asexual blood-stage parasites. A model of optimal timing suggests that primaquine follow-up approximately eight days after a clinical episode could further reduce the duration of infectiousness from two to four weeks down to a few days. The prospects of malaria elimination would be substantially improved by changing the timing of primaquine administration and combining this with effective detection and management of imported malaria cases. The value of using primaquine to reduce residual gametocyte densities and to reduce malaria transmission was considered in the context of a malaria transmission model; the added benefit of the primaquine follow-up treatment would be relatively large only if a high fraction of patients (>95%) are initially treated with schizonticidal agents.</p> <p>Conclusion</p> <p>Mathematical models have previously identified the long duration of <it>P. falciparum </it>asexual blood-stage infections as a critical point in maintaining malaria transmission, but infectiousness can persist for two to four weeks because of residual populations of mature gametocytes. Simulations from new models suggest that, in areas where a large fraction of malaria cases are treated, curing the asexual parasitaemia in a primary infection, and curing mature gametocyte infections with an eight-day follow-up treatment with primaquine have approximately the same proportional effects on reducing the infectious period. Changing the timing of primaquine administration would, in all likelihood, interrupt transmission in this area with very good health systems and with very low endemicity.</p

    Effects of an Asthma Education Camp Program on Quality of Life and Asthma Control among Thai Children with Asthma: A Quasi-Experimental Study

    No full text
    Caregiver knowledge and management ability can improve asthma control and quality of life (QoL) among children with asthma. A quasi-experimental study was proposed to assess the effect of a 1 day educational camp program on the QoL of children with asthma and on their caregivers&rsquo; asthma knowledge and management. Children with asthma and their caregivers were invited to attend a camp. The Pediatric Asthma Quality of Life Questionnaire (PAQLQ), Childhood Asthma Control Test score, and forced expiratory volume in 1 s were assessed in children at the first, 3 month, 6 month, and 1 year visits. The caregiver&rsquo;s knowledge, attitudes, and practice (KAP) survey was assessed at each visit. A total of 212 patients were enrolled (mean age: 8.56 &plusmn; 1.63 years) but only 72 patients attended the camp. There was no significant difference in baseline characteristics, asthma severity, or asthma risk factors between camp attendees and non-attendees. The KAP of caregivers who attended the camp was significantly higher than non-attendees at the 3 month and 6 month visits (16.86 &plusmn; 2.3 vs. 15.95 &plusmn; 2.78 (p = 0.009); 17.25 &plusmn; 2.22 vs. 16.7 &plusmn; 2.68 (p = 0.04)). QoL did not significantly differ between patient attendees vs. non-attendees. PAQLQ mean score correlated with asthma control, indicating that patients with well-controlled asthma had better QoL than those with unstable asthma control (p &lt; 0.001). An asthma education camp can help increase self-management knowledge, even though its effect may be short-term. Integrating asthma education into routine care could enhance asthma management in children
    corecore