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Abstract

Malaria is a significant public health problem and impediment to socioeconomic develop-
ment in countries of the Greater Mekong Subregion (GMS), which comprises Cambodia, 
China’s Yunnan Province, Lao People’s Democratic Republic, Myanmar, Thailand, 
and Vietnam. Over the past decade, intensified malaria control has greatly reduced the 
regional malaria burden. Driven by increasing political commitment, motivated by recent 
achievements in malaria control, and urged by the imminent threat of emerging artemis-
inin resistance, the GMS countries have endorsed a regional malaria elimination plan with 
a goal of eliminating malaria by 2030. However, this ambitious, but laudable, goal faces 
a daunting array of challenges and requires integrated strategies tailored to the region, 
which should be based on a mechanistic understanding of the human, parasite, and vec-
tor factors sustaining continued malaria transmission along international borders. Malaria 
epidemiology in the GMS is complex and rapidly evolving. Spatial heterogeneity requires 
targeted use of the limited resources. Border malaria accounts for continued malaria trans-
mission and represents sources of parasite introduction through porous borders by highly 
mobile human populations. Asymptomatic infections constitute huge parasite reservoir 
requiring interventions in time and place to pave the way for malaria elimination. Of the 
two most predominant malaria parasites, Plasmodium falciparum and P. vivax, the preva-
lence of the latter is increasing in most member GMS countries. This parasite requires the 
use of 8-aminoquinoline drugs to prevent relapses from liver hypnozoites, but high preva-
lence of glucose-6-phosphate dehydrogenase deficiency in the endemic human popula-
tions makes it difficult to adopt this treatment regimen. The recent emergence of resistance 
to artemisinins and partner drugs in P. falciparum has raised both regional and global 
concerns, and elimination efforts are invariably prioritized against this parasite to avert 
spread. Moreover, the effectiveness of the two core vector control interventions—insec-
ticide-treated nets and indoor residual spraying—has been declining due to insecticide 
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resistance and increased outdoor biting activity of mosquito vectors. These technical chal-
lenges, though varying from country to country, require integrated approaches and better 
understanding of the malaria epidemiology enabling targeted control of the parasites and 
vectors. Understanding the mechanism and distribution of drug-resistant parasites will 
allow effective drug treatment and prevent, or slow down, the spread of drug resistance. 
Coordination among the GMS countries is essential to prevent parasite reintroduction 
across the international borders to achieve regional malaria elimination.

Keywords: malaria elimination, Greater Mekong Subregion, epidemiology, drug 
resistance, migration, insecticide resistance

1. Introduction

With steady gains in the fight against malaria over the past decade, the international malaria 
community once again is embracing the global goal of malaria eradication. Meanwhile, the 
World Health Organization (WHO) has launched a new Global Technical Strategy for Malaria 
(http://www.who.int/malaria/areas/global_technical_strategy/en/) as the operational frame-
work guiding malarious nations and regions in their pursuit of malaria elimination. In the 
Greater Mekong Subregion (GMS) of Southeast Asia (SEA), which comprises Cambodia, China’s 
Yunnan Province, Lao People’s Democratic Republic (Laos), Myanmar, Thailand, and Vietnam, 
malaria has been a significant public health problem and impediment to socioeconomic develop-
ment [1, 2]. Intensified malaria control in recent years, fueled by increased international fund-
ing and local bustling economic development, has greatly reduced the regional malaria burden. 
Compared with confirmed malaria cases in 2010, the number of malaria cases in the GMS was 
reduced by ~50% in 2014. Driven by increasing political will and financial support and moti-
vated by recent achievements in malaria control, the six GMS nations have endorsed a regional 
malaria elimination plan with an ultimate goal of eliminating Plasmodium falciparum malaria by 
2025 and all malaria by 2030 [3]. Emerging artemisinin resistance in this region further escalated 
urgency for National Malaria Control Programmes (NMCPs) to make such a transition of their 
aims [4, 5]. However, this ambitious goal faces numerous technical challenges [6] and requires 
integrated strategies tailored to the whole region and individual countries. In the malaria elimi-
nation settings, control strategies need to align with the changing malaria epidemiology. Control 
measures such as long-lasting insecticide-treated bed nets (LLINs), indoor residual insecticide 
spraying (IRS), rapid diagnostic tests (RDTs), and artemisinin combined therapies (ACTs) used 
to effectively reduce malaria burden in hyperendemic regions may not be enough for the malaria 
elimination task. Additional tools such as mass drug administration (MDA) and innovative 
vector control programs may be needed. Here, we attempt to provide an updated view of the 
changing malaria epidemiology, the challenges, and prospect of malaria elimination in the GMS.

2. Border malaria

Malaria epidemiology in the GMS is complex and rapidly evolving. There is immense spatial 
heterogeneity in both regional and countrywide disease distribution (Figure 1 and Table 1). 
Within the GMS, Myanmar has the heaviest malaria burden and accounts for more than 53% 
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of regionally confirmed malaria cases. Within each country, the pattern of malaria distribution 
remains similar, but transmission is still concentrated along international borders—the so-called 
border malaria. In border areas, there is poor accessibility to healthcare services, and surveil-
lance for malaria is far less than optimal [8]. Given that these border regions represent prob-

able malaria reservoirs and that importation and dispersal by migratory human populations 
are extremely difficult to monitor, border malaria constitutes one of the biggest obstacles for 
malaria elimination. Highly mobile populations crossing porous borders are a major contribu-

tor to parasite introduction and continued transmission [9]. Border areas also are home to eth-

nic minorities, hill tribes, temporary and seasonal migrants, refugees, and internally displaced 
people; many have poor educational level, limited access to healthcare services, and reduced 
legal rights. Geographical and cultural isolation leaves these groups at a high risk for infection 
and poor access to treatment [1, 2, 10, 11]. In Thailand, malaria makes up ~31% of communicable 
diseases diagnosed in migrants, as compared to 3% in Thai natives [12]. Heavy population flow 
along the extremely porous borders makes neighboring countries very vulnerable to malaria 
introduction and reintroduction [13, 14]. As a result, malaria prevalence on both sides of the 
border is often highly correlated [15]. In Yunnan Province of China, although autochthonous  
P. vivax malaria was still detected, P. falciparum infections were mostly associated with travel 
history to Myanmar [16]. There is also genetic evidence of asymmetric parasite flow from 
the more endemic to the less endemic side of the border [17, 18]. On a smaller geographi-
cal scale in a border village in Western Thailand, malaria incidence was clustered and sig-

nificantly associated with citizen status indicating recent migration [19]. Moreover, there is a 
high probability that frequent border crossings by migrants will spread artemisinin-resistant 
P.  falciparum [20, 21] beyond the “containment zone” [22, 23]. More sophisticated surveillance 

Figure 1. The geographical proximity of countries and reported malaria cases for data based on 2016 in the Greater 
Mekong Subregion (GMS). Note: The majority of malaria cases in Yunnan Province of China were imported.
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Country/drug policy* Year No. of malaria cases % of confirmed cases° No. of death cases

Pf Pv Others

China

Uncomplicated Pf:

ART + NQ; AS + AQ; D-P

Severe malaria:

AM; AS; pyronaridine

P. vivax: CQ + PQ (8d)

2011 3000 41.9 56.6 1.5 ≤100

2012 240 8.2 91.8 — 0

2013 ≤100 64.1 35.9 — 0

2014 ≤100 10.7 89.3 — 0

2015 ≤100 3.0 78.8 18.2 0

2016 ≤10 0.0 100.0 — 0

Cambodia

Uncomplicated Pf:

AS + MQ, D-P

Severe malaria:

AM; AS; QN

P. vivax: D-P + PQ (14d)

2011 203,600 62.6 37.4 — 400

2012 146,000 50.4 49.6 — 220

2013 76,500 45.8 54.2 — 110

2014 89,700 58.8 41.2 — 150

2015 120,300 61.3 38.7 — 210

2016 83,300 58.2 41.8 — 140

Laos

Uncomplicated Pf:

AL

Severe malaria:

AS + AL

P. vivax: CQ + PQ (14d)

2011 42,800 92.7 7.1 0.2 ≤100

2012 112,700 83.4 16.6 — 250

2013 93,500 67.0 33.0 — 170

2014 117,300 52.9 47.1 — 180

2015 87,900 42.3 57.7 — 120

2016 27,390 39.5 60.5 — ≤100

Myanmar

Uncomplicated Pf:

AL; AM; AS + MQ; D-P; PQ

Severe malaria:

AM; AS; QN

P. vivax: CQ + PQ (14d)

2011 1,506,000 68.4 31.6 — 2800

2012 1,974,000 71.8 28.2 — 4000

2013 585,000 70.4 29.6 — 1100

2014 360,000 69.9 30.1 — 700

2015 236,500 64.1 35.9 — 400

2016 142,600 60.3 39.7 — 240

Thailand

Uncomplicated Pf:

D-P

Severe malaria:

QN + doxycycline

P. vivax: CQ + PQ (14d)

2011 24,900 40.5 59.5 0.1 ≤100

2012 32,600 39.8 60.2 — ≤100

2013 33,300 44.0 46.8 9.3 ≤100

2014 37,900 37.8 54.1 8.1 ≤100

2015 8000 41.7 58.0 0.2 ≤100

2016 11,520 32.5 46.1 21.5 ≤100
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tools are needed to provide a clear picture of border malaria transmission so that targeted con-
trol measures are implemented to curb the spread of resistance and to prevent the reintroduc-
tion of parasites into populations where they have been eliminated. Thus, malaria elimination 
is a multinational, multipronged issue, with cross-border migration posing one of the largest 
threats to its success [24]. In recognition of this issue, the GMS countries have initiated bi- and 
multilateral coordination between the NMCPs. While the healthcare systems in the GMS coun-
tries are improving, further bolstering is needed to meet the malaria elimination challenge.

3. Asymptomatic malaria as an important reservoir

It has long been held as conventional wisdom that asymptomatic infections would be much less 
frequent in low-endemicity settings because the level of exposure-related immunity to malaria in 
human populations may be low [25]. However, asymptomatic infections represent the vast major-
ity of infections in all endemic settings [26]. The use of molecular tools is essential for identifying 
submicroscopic infections. For both P. falciparum and P. vivax, microscopy detects only 1/3–1/2 of 
the infections detected by regular PCR [27, 28]. As the sensitivity of detection methods increases 
(e.g., with the use of a larger blood volume or reverse transcriptase-PCR targeting the parasite 
18S rRNA), greater proportions of asymptomatic infections are discovered, revealing larger pools 
of infections [29, 30]. In Western Thailand and other GMS regions, qPCR and large-volume ultra-
sensitive qPCR could detect as much as 20% of the villagers harboring malaria infections as com-

pared to ~5% detected by microscopy [31, 32]. Although we still do not have a clear picture about 
how much these asymptomatic infections actually contribute to malaria transmission in these 
areas [33], studies in Western Thailand have clearly demonstrated mosquito infectivity of sub-
microscopic P. falciparum and P. vivax [34], albeit the asymptomatic parasite carriers were found 
to be much less infective to mosquitoes than acute cases [35]. Since asymptomatic individuals 
are unlikely to seek treatment, they are missed by passive case detection, and submicroscopic 
infections also are missed by microscopy-based active case detection. It is highly possible that 
these asymptomatic infections act as important silent reservoirs of transmission. Even under such 

Country/drug policy* Year No. of malaria cases % of confirmed cases° No. of death cases

Pf Pv Others

Vietnam

Uncomplicated Pf:

D-P

Severe malaria:

AS; QN

P. vivax: CQ + PQ (14d)

2011 22,630 64.3 35.7 — ≤100

2012 26,610 61.3 38.7 — ≤100

2013 23,140 58.0 42.0 — ≤100

2014 21,200 54.2 45.8 — ≤100

2015 12,560 48.9 51.0 0.2 ≤100

2016 6000 57.6 42.1 0.4 ≤10

*AL, artemether + lumefantrine; AM, artemether; AQ, amodiaquine; ART, artemisinin; AS, artesunate; CQ, chloroquine; 
D-P, dihydroartemisinin + piperaquine; MQ, mefloquine; NQ, naphthoquine; PQ, primaquine; QN, quinine.
°Pf: Plasmodium falciparum; Pv: Plasmodium vivax.

Table 1. Antimalarial drug policy and malaria transmission trends in the Greater Mekong Subregion (GMS) countries 
during 2011–2016 [7].
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 low-endemicity settings, it is estimated that submicroscopic carriers may be the source of 20–50% 
of all human-to-mosquito transmission [36], underlining the significance of managing this popu-

lation in the malaria elimination phase. Therefore, information about the prevalence and seasonal 
dynamics of the asymptomatic infections in the border regions and their contribution to trans-

mission is required to guide the efforts of NMCPs to achieve malaria elimination.

4. The burden of P. vivax malaria and G6PD deficiency

Another characteristic of the rapidly evolving malaria epidemiology in the GMS is that the 
prevalence of P. vivax is increasing proportionally to P. falciparum [37] (Table 1). The resilience 
of vivax malaria to control efforts may be attributed to some intrinsic biological features of 
this parasite. First, P. vivax only invades reticulocytes, and thus the resulting parasitemia is 
normally far lower than that of P. falciparum malaria. This makes microscopy-based diagno-

sis and RDTs not sufficiently sensitive in detecting P. vivax infections [38–40]. Second, dur-

ing blood-stage infections with P. vivax, gametocytes are formed before the manifestation of 
clinical symptoms, which allows transmission of the parasite before treatment. Third, P. vivax 

develops dormant hypnozoites in the liver of the human host, which awaken in the weeks and 
months following a primary attack and cause relapses. Finally, vivax malaria is often trans-

mitted by outdoor biting mosquitoes, making the current insecticide-based control measures 
(LLIN and IRS) less effective. Because of these unique features, traditional malaria control 
efforts often fail to control P. vivax transmission. In addition, containment of P. falciparum has 
been prioritized in the GMS, partially because of the emerging artemisinin resistance. As a 
result, P. falciparum prevalence has decreased, while the proportion of P. vivax has increased.

In the GMS, the first-line therapy for vivax malaria remains chloroquine (CQ) and primaquine 
(PQ) (Table 1) [41]. Reports of clinical CQ resistance in many regions of the world and falling 
efficacy of PQ are of great concern for vivax malaria control [42–45]. Although some studies 
indicated that P. vivax in the GMS remained sensitive to CQ [46–51], others clearly documented 
CQ-resistant P. vivax [52–55]. In Myanmar, sporadic CQ-resistant P. vivax cases were first 
reported more than 20 years ago [52, 53]. A later report of 34% treatment failures in Dawei of 
Southern Myanmar suggests an increase of CQ resistance [55]. More recent studies identified 
both early and late treatment failures in Myawaddy of the Kayin State and Kawthaung of the 
Tanintharyi Region, Myanmar [56]. In northeastern Myanmar bordering China, a recent study 
showed 5.2% cumulative incidence of recurrent parasitemia during a 28-day follow-up of 587 
P. vivax treated with CQ/PQ [57], suggesting sensitivity to CQ may also be deteriorating in 
this region. This reduced sensitivity of P. vivax to CQ requires close surveillance and potential 
implementation of more effective treatment measures such as ACTs [58].

Studies from Papua New Guinea suggest that 80% of the vivax infections may be attributed to 
relapses. A modeling approach predicts that as much as 96% of clinical attacks by P. vivax in 

Thailand are due to relapses [60]. For radical cure, WHO recommends a dose of 0.25–0.5 mg/kg 
of PQ daily for 14 days. However, the lower dose (total of 3.5 mg/kg) fails to prevent relapses 
in many different endemic sites [61]. Because of the potential risk of severe hemolysis that this 
drug could cause in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency, PQ 
is not widely prescribed [43, 62, 63]. In routine practice, G6PD status is not screened; the GMS 
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nations still use the lower total dose of PQ in fear of the possible harm to those with G6PD defi-
ciency. Because evaluation of PQ efficacy in preventing relapses requires longer-term follow-
up, the clinical efficacy of the current PQ regimen for radical cure of vivax malaria in the GMS 
is unknown. Even with longer follow-ups, it is still not possible to reliably determine whether 
a recurrent infection after day 28 is due to relapse or reinfection given that a relapse infection 
may be from reactivation of a different hypnozoite clone [64, 65]. For PQ efficacy, host factors 
also need to be considered. Recently, failures of the PQ radical cure have been linked to reduced 
activity of the hepatic cytochrome P450 (CYP) 2D6 [66], which mediates activation of PQ to its 
active metabolite(s) [67, 68]. Different CYP2D6 activities have differential effects on the phar-
macokinetics of PQ [69]. CYP2D6 is involved in the metabolism of as many as 25% of drugs in 
clinical use and is also a member of the CYP450 family with the greatest prevalence and genetic 
polymorphism [70, 71]. About 70 CYP2D6 allelic variants have been found and grouped into 4 
phenotypic classes of ultra-rapid, extensive, intermediate, and abolished protein activity [72]. 
The frequency of alleles with reduced function is as high as 50% in most Asian populations [73]. 
Thus, it is important to determine the extent by which reduced CYP2D6 activity is responsible 
for PQ failures in radical cure of vivax malaria [74].

The G6PD gene is extraordinarily polymorphic with more than 400 variants discovered based 
on biochemical diagnosis [75], among which 186 mutations are associated with G6PD deficiency 
[76]. The prevalence of G6PD deficiency and distribution of G6PD variants vary geographically 
[77]. In the GMS, G6PD deficiency is often highly prevalent among ethnic groups. Along the 
Thailand-Myanmar border, the prevalence of G6PD deficiency was above 10% [78–80], whereas 
in the Kachin ethnicity along the China-Myanmar border, it almost reached 30% [81]. In Thailand 
and Myanmar, the Mahidol variant (487G>A) is the most predominant and often accounts for 
~90% of all mutations [79, 81–83]. According to the WHO classification, the Mahidol variant is a 
Class III mutation or mild-deficient variant with 60% enzyme activity [76]. However, this classi-
fication may not be accurate since patients with the Mahidol variant often had <1% of the normal 
G6PD activity [79, 84, 85]. Patients having the G6PD Mahidol variant (487G>A) rarely had acute 
hemolytic anemia after taking the normal dose of PQ [84, 86]. In contrast to the belief that PQ 
only induces mild hemolysis in patients with the Mahidol variant, there have been case reports 
showing that the normal dosage of 15 mg/kg/day for 3 days in vivax patients with this G6PD 
variant could lead to acute hemolytic anemia that required blood transfusion or even cause renal 
failure [87–89]. It is noteworthy that G6PD activity can vary substantially between individu-
als with the same variant and even within the same individual over time. Therefore, with the 
prevalence of vivax malaria in this region and the goal of malaria elimination, the deployment 
of point-of-care G6PD deficiency diagnostics is urgent [90]. In addition, there is a need to test 
whether weekly PQ of 0.75 mg/kg for 8 weeks, a dosage considered safe for the G6PD African 
variant [91], could be prescribed in the GMS without prior testing for G6PD deficiency.

5. Management of drug resistance in P. falciparum

ACTs have played an indispensable role in reducing global malaria-associated mortality 
and morbidity. However, these achievements are threatened by the recent emergence of 
artemisinin resistance in P. falciparum in the GMS [92–94]. Artemisinin resistance is associ-
ated with a parasite clearance half-life of >5 h as compared to a normal value of ~2 h [94–96]. 
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Clinical artemisinin resistance was first detected in western Cambodia [92, 93, 96, 97] but is 
now detected in other GMS regions including Thailand, Laos, Vietnam, Southern Myanmar, 
and the China-Myanmar border area [94, 95, 98–103]. Out of fear of a catastrophic spread of 
artemisinin resistance to Africa, WHO deployed an artemisinin resistance containment plan 
in Cambodia [104]. Later, with the finding that artemisinin resistance has emerged indepen-

dently in many areas of the GMS [105], the containment plan has been revised to a regional 
malaria elimination strategy [3, 4].

The principle of ACTs is that the fast-acting artemisinins rapidly reduce the parasite biomass, 
leaving the slow-eliminating partner drugs to clear the residual parasites. The emergence of 
artemisinin resistance means that a larger parasite mass is left for the partner drugs to clear after 
the usual 3-day ACT course, which increases the chance of resistance development to the partner 
drugs. Indeed, in the short period of time since the deployment of ACTs, clinical resistance to 
two ACTs, first artesunate/mefloquine [106] and more recently dihydroartemisinin/piperaquine 
(DHA/PPQ), has emerged in the GMS. These are the two most popular ACTs deployed in the GMS 
countries (Table 1). Since promising new antimalarials are still in the development pipeline, pos-

sible solutions to this problem include introduction of new ACTs, rotation of different ACTs, use 
of longer course of ACT treatment, and introduction of triple ACTs (artemisinin derivatives with 
two slow-eliminating partner drugs) [112]. To mitigate the threat of spread of artemisinin-resistant  
P. falciparum parasites, heightened surveillance is needed in sentinel sites of the GMS [113].

Tools for monitoring the epidemiology of antimalarial drug resistance include ex vivo or 
in vitro drug assays and molecular surveillance, which complement in vivo drug efficacy stud-

ies. It is noteworthy that the slow-clearance phenotype of clinical artemisinin resistance does 
not correspond to the 50% inhibitory concentrations of artemisinin drugs estimated from the 
conventional DNA replication-based in vitro assay but is better reflected in the newly developed 
ring-stage survival assay, which quantifies the number of early ring-stage parasites (0–3 h) that 
can survive the exposure to 700 nM of DHA for 6 h [114]. The discovery of mutations in the kelch 

domain protein K13 associated with artemisinin resistance provides a convenient molecular 
marker for a large-scale surveillance purpose [115]. To date, the correlations of K13 mutations 
with delayed parasite clearance have been established in several studies [95, 105, 115–117] but 
only a very limited number of K13 mutations were confirmed to confer in vitro artemisinin 
resistance through genetic manipulations [118, 119]. The K13 gene in the world P. falciparum 

populations harbors more than 108 nonsynonymous mutations, which showed marked geo-

graphic disparity in frequency and distribution [120]. Similarly, K13 mutations in the GMS also 
showed highly heterogeneous distribution [103, 121–125], possibly reflecting different drug 
histories and evolutionary origins of the parasite populations [126]. Clinical failures of DHA/
PPQ have been associated with increased in vitro PPQ resistance and the molecular markers 
of PPQ resistance in western Cambodia include amplification of the aspartic protease genes 
plasmepsin 2–3 and point mutation E415G in an exonuclease gene (PF3D7_12362500) [127, 128]. 
Molecular surveillance of artemisinin resistance in western Cambodia, Thailand, and Laos has 
detected the spread of a parasite clone with a long K13 haplotype carrying the C580Y mutation 
(the artemisinin-resistant mutation reaching near fixation in western Cambodia) to northeastern 
Thailand and southern Laos, which indicates a transnational selective sweep [129]. Importantly, 
this parasite lineage also harbors the plasmepsin 2 amplification, which may preclude further 
use of DHA/PPQ in this region. In addition, this situation also necessitates implementation of 
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stringent follow-ups of malaria cases after ACT treatment to ensure that recrudescent cases are 
treated with effective antimalarials. Thus, surveillance should be mandatory to delay the spread 
of the resistant parasites and to accelerate malaria elimination in the GMS.

6. Vectors

LLINs and IRS are the key vector-based malaria interventions that have been found to be highly 
effective in sub-Saharan Africa. However, these measures are much less efficient in the GMS 
[130]. The GMS has a complex vector system; most of the malaria vectors belong to species com-

plexes or groups such as Dirus, Minimus, Maculatus, and Sundaicus, which vary significantly 
in terms of geographic distribution, ecology, behavior, and vectorial competence [131–133]. At 
least 19 species are known malaria vectors, some of which comprise cryptic species complexes 
[132]. In order to apply the appropriate control approaches in relation to the biology of the vec-
tor species, we first need to identify the mosquitoes to their species level and to differentiate the 
vector from nonvector species, which requires molecular assays [134]. These vector species dis-
play significant variations in geographical distribution and seasonal dynamics, and accordingly 
their roles in malaria transmission also vary in space and time [135]. In many endemic areas 
of the GMS, perennial malaria transmission is maintained by Anopheles dirus during the rainy 
season and An. minimus during the drier periods of the year [132, 136]. Environmental changes 
such as deforestation have caused changes in the vector species composition [137, 138] and 
benefited the survivorship of major vectors [40]. Since many of these vector species exhibit early 
evening and outdoor biting preferences, LLINs alone are not sufficient for interrupting malaria 
transmission [140]. In addition, the emergence and spread of insecticide resistance further com-

promise the effectiveness of the mosquito control measures [141–143].

7. Technological innovation for malaria elimination

The technical challenges discussed here suggest that the currently used malaria control tools 
(RDT, ACT, LLIN, and IRS) that were instrumental for the gains against malaria may not be 
sufficient for malaria elimination [144]. Additional tools are needed to achieve the final goal of 
malaria elimination in the GMS. First, residual transmission requires MDA to eliminate asymp-
tomatic and submicroscopic parasite reservoirs. For the success of MDA, better knowledge of 
malaria epidemiology is needed so that targeted MDA can be implemented. Successful MDA 
programs also require strong community engagement. MDA has proved successful in elimi-
nating malaria in Asia-Pacific regions such as Vanuatu and central China [145, 146]. In an ear-
lier study conducted in Cambodian villages, MDA of artemisinin-PPQ at 10-day intervals for 
6 months drastically reduced P. falciparum rates [147]. A recent pilot MDA study conducted in 
villages of Kayin State, Myanmar, showed that a 3-day supervised course of DHA/PPQ was 
well tolerated and highly effective in reducing asymptomatic P. falciparum carriage, whereas the 
effect on reducing P. vivax was transient presumably due to relapse [148]. Thus, drugs targeting 
the P. vivax hypnozoite reservoir are required for MDA in the GMS, where P. vivax is becoming 
the predominant parasite species [149]. The high prevalence of G6PD deficiency in the target 
populations demands prescreening using a point-of-care diagnostic for G6PD deficiency. From 
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a programmatic standpoint, such an operation requires substantial financial commitment. 
Second, effective management of malaria cases in the face of emergence and spread of drug 
resistance requires new therapies such as triple ACTs. Third, novel vector control approaches 
are desperately needed including larval control strategies [150], incorporation of ivermectin in 
the MDA program to reduce the life span of mosquitoes [151, 152], topical and spatial repellents 
against outdoor biting vectors [153, 154], genetically manipulated mosquitoes for population 
replacement [155], and next generation of LLINs and IRS [156]. It is imperative that new inter-
ventions are continuously developed and integrated into malaria elimination programs.

8. Conclusions

Malaria elimination in the GMS carries the urgency of eliminating artemisinin-resistant P. falci­

parum parasites before they become untreatable and spread to Africa. The changing malaria epi-
demiology with increasing proportion of P. vivax malaria requires an 8-aminoquinoline drug for 
radical cure, but it demands deployment of point-of-care diagnostics for G6PD deficiency due 
to its high prevalence in endemic human populations. In addition, the prevalent asymptomatic 
parasite reservoirs need to be targeted by a MDA approach. The diversity of Anopheles vectors in 
the GMS and decreasing effectiveness of indoor control measures, such as LLIN and IRS facing 
the outdoor malaria transmission, also require development and implementation of novel inter-
ventions for vector control. To meet the challenge of border malaria, coordinated efforts among 
the NMCPs targeting the mobile and migrant populations along international borders will pre-
vent cross-border reintroduction of malaria. Altogether, a holistic attack on malaria using inte-
grated approaches is necessary to achieve the goal of regional malaria elimination in the GMS.
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