2,435 research outputs found
The Green's function for the radial Schramm-Loewner evolution
We prove the existence of the Green's function for radial SLE(k) for k<8.
Unlike the chordal case where an explicit formula for the Green's function is
known for all values of k<8, we give an explicit formula only for k=4. For
other values of k, we give a formula in terms of an expectation with respect to
SLE conditioned to go through a point.Comment: v1: 16 pages, 0 figure
Distribution of sizes of erased loops for loop-erased random walks
We study the distribution of sizes of erased loops for loop-erased random
walks on regular and fractal lattices. We show that for arbitrary graphs the
probability of generating a loop of perimeter is expressible in
terms of the probability of forming a loop of perimeter when a
bond is added to a random spanning tree on the same graph by the simple
relation . On -dimensional hypercubical lattices,
varies as for large , where for , where
z is the fractal dimension of the loop-erased walks on the graph. On
recursively constructed fractals with this relation is modified
to , where is the hausdorff and
is the spectral dimension of the fractal.Comment: 4 pages, RevTex, 3 figure
SLE-type growth processes and the Yang-Lee singularity
The recently introduced SLE growth processes are based on conformal maps from
an open and simply-connected subset of the upper half-plane to the half-plane
itself. We generalize this by considering a hierarchy of stochastic evolutions
mapping open and simply-connected subsets of smaller and smaller fractions of
the upper half-plane to these fractions themselves. The evolutions are all
driven by one-dimensional Brownian motion. Ordinary SLE appears at grade one in
the hierarchy. At grade two we find a direct correspondence to conformal field
theory through the explicit construction of a level-four null vector in a
highest-weight module of the Virasoro algebra. This conformal field theory has
central charge c=-22/5 and is associated to the Yang-Lee singularity. Our
construction may thus offer a novel description of this statistical model.Comment: 12 pages, LaTeX, v2: thorough revision with corrections, v3: version
to be publishe
Diagnosis: Reasoning from first principles and experiential knowledge
Completeness, efficiency and autonomy are requirements for suture diagnostic reasoning systems. Methods for automating diagnostic reasoning systems include diagnosis from first principles (i.e., reasoning from a thorough description of structure and behavior) and diagnosis from experiential knowledge (i.e., reasoning from a set of examples obtained from experts). However, implementation of either as a single reasoning method fails to meet these requirements. The approach of combining reasoning from first principles and reasoning from experiential knowledge does address the requirements discussed above and can possibly ease some of the difficulties associated with knowledge acquisition by allowing developers to systematically enumerate a portion of the knowledge necessary to build the diagnosis program. The ability to enumerate knowledge systematically facilitates defining the program's scope, completeness, and competence and assists in bounding, controlling, and guiding the knowledge acquisition process
Harmonic Measure and Winding of Conformally Invariant Curves
The exact joint multifractal distribution for the scaling and winding of the
electrostatic potential lines near any conformally invariant scaling curve is
derived in two dimensions. Its spectrum f(alpha,lambda) gives the Hausdorff
dimension of the points where the potential scales with distance as while the curve logarithmically spirals with a rotation angle
phi=lambda ln r. It obeys the scaling law f(\alpha,\lambda)=(1+\lambda^2)
f(\bar \alpha)-b\lambda^2 with \bar \alpha=\alpha/(1+\lambda^2) and
b=(25-c)/{12}$, and where f(\alpha)\equiv f(\alpha,0) is the pure harmonic
measure spectrum, and c the conformal central charge. The results apply to O(N)
and Potts models, as well as to {\rm SLE}_{\kappa}.Comment: 3 figure
The dimension of loop-erased random walk in 3D
We measure the fractal dimension of loop-erased random walk (LERW) in 3
dimensions, and estimate that it is 1.62400 +- 0.00005. LERW is closely related
to the uniform spanning tree and the abelian sandpile model. We simulated LERW
on both the cubic and face-centered cubic lattices; the corrections to scaling
are slightly smaller for the face-centered cubic lattice.Comment: 4 pages, 4 figures. v2 has more data, minor additional change
Quantitative estimates of discrete harmonic measures
A theorem of Bourgain states that the harmonic measure for a domain in
is supported on a set of Hausdorff dimension strictly less than
\cite{Bourgain}. We apply Bourgain's method to the discrete case, i.e., to the
distribution of the first entrance point of a random walk into a subset of , . By refining the argument, we prove that for all \b>0 there
exists \rho (d,\b)N(d,\b), any , and any | \{y\in\Z^d\colon \nu_{A,x}(y)
\geq n^{-\b} \}| \leq n^{\rho(d,\b)}, where denotes the
probability that is the first entrance point of the simple random walk
starting at into . Furthermore, must converge to as \b \to
\infty.Comment: 16 pages, 2 figures. Part (B) of the theorem is ne
Monte Carlo Tests of SLE Predictions for the 2D Self-Avoiding Walk
The conjecture that the scaling limit of the two-dimensional self-avoiding
walk (SAW) in a half plane is given by the stochastic Loewner evolution (SLE)
with leads to explicit predictions about the SAW. A remarkable
feature of these predictions is that they yield not just critical exponents,
but probability distributions for certain random variables associated with the
self-avoiding walk. We test two of these predictions with Monte Carlo
simulations and find excellent agreement, thus providing numerical support to
the conjecture that the scaling limit of the SAW is SLE.Comment: TeX file using APS REVTeX 4.0. 10 pages, 5 figures (encapsulated
postscript
Note on SLE and logarithmic CFT
It is discussed how stochastic evolutions may be linked to logarithmic
conformal field theory. This introduces an extension of the stochastic Loewner
evolutions. Based on the existence of a logarithmic null vector in an
indecomposable highest-weight module of the Virasoro algebra, the
representation theory of the logarithmic conformal field theory is related to
entities conserved in mean under the stochastic process.Comment: 10 pages, LaTeX, v2: version to be publishe
Cardy's Formula for Certain Models of the Bond-Triangular Type
We introduce and study a family of 2D percolation systems which are based on
the bond percolation model of the triangular lattice. The system under study
has local correlations, however, bonds separated by a few lattice spacings act
independently of one another. By avoiding explicit use of microscopic paths, it
is first established that the model possesses the typical attributes which are
indicative of critical behavior in 2D percolation problems. Subsequently, the
so called Cardy-Carleson functions are demonstrated to satisfy, in the
continuum limit, Cardy's formula for crossing probabilities. This extends the
results of S. Smirnov to a non-trivial class of critical 2D percolation
systems.Comment: 49 pages, 7 figure
- …