73 research outputs found

    The construction of airfoil pressure models by the plate method: Achievements, current research, technology development and potential applications

    Get PDF
    A method of constructing airfoils by inscribing pressure channels on the face of opposing plates, bonding them together to form one plate with integral channels, and contour machining this plate to form an airfoil model is described. The research and development program to develop the bonding technology is described as well as the construction and testing of an airfoil model. Sample aerodynamic data sets are presented and discussed. Also, work currently under way to produce thin airfoils with camber is presented. Samples of the aft section of a 6 percent airfoil with complete pressure instrumentation including the trailing edge are pictured and described. This technique is particularly useful in fabricating models for transonic cryogenic testing, but it should find application in a wide ange of model construction projects, as well as the fabrication of fuel injectors, space hardware, and other applications requiring advanced bonding technology and intricate fluid passages

    Cooling system for high speed aircraft

    Get PDF
    The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling

    Orbiter thermal pressure drop characteristics for shuttle orbiter thermal protection system components: High density tile, low density tile, densified low density tile, and strain isolation pad

    Get PDF
    Pressure drop tests were conducted on available samples of low and high density tile, densified low density tile, and strain isolation pads. The results are presented in terms of pressure drop, material thickness and volume flow rate. Although the test apparatus was only capable of a small part of the range of conditions to be encountered in a Shuttle Orbiter flight, the data serve to determine the type of flow characteristics to be expected for each material type tested; the measured quantities also should serve as input for initial venting and flow through analysis

    Support interference of wind tunnel models: A selective annotated bibliography

    Get PDF
    This bibliography, with abstracts, consists of 143 citations arranged in chronological order by dates of publication. Selection of the citations was made for their relevance to the problems involved in understanding or avoiding support interference in wind tunnel testing throughout the Mach number range. An author index is included

    Measurements in the flow field of a cylinder with a laser transit anemometer and a drag rake in the Langley 0.3 m transonic cryogenic tunnel

    Get PDF
    An experiment was conducted at the 0.3 m Transonic Cryogenic Tunnel using a Laser Transit Anemometer (LTA) to probe the flow field around a 3.05 centimeter-diameter circular cylinder. Measurements were made along the stagnation line and determination of particle size was evaluated by their ability to follow the flow field. The LTA system was also used to scan into the boundary layer near the 45 degree point on the model. Results of these scans are presented in graphic and tabular form. Flow field particle seeding was accomplished by inbleeding dry service air. The residual moisture (5-10 ppm) condensed and formed ice particles which served as Mie scattering centers for the LTA detection system. Comparison of data taken along the stagnation streamline with theory indicated that these particles tracked the velocity gradient of the flow. Tunnel operating conditions for the tests were a Mach number of 0.3, a pressure of 1.93 x 100000 n/m squared, and a temperature of 225 degrees K. Free stream Mach number and pressure were varied for the particle size determination

    Cryogenic wind tunnels for high Reynolds number testing

    Get PDF
    A compilation of lectures presented at various Universities over a span of several years is discussed. A central theme of these lectures has been to present the research facility in terms of the service it provides to, and its potential effect on, the entire community, rather than just the research community. This theme is preserved in this paper which deals with the cryogenic transonic wind tunnels at Langley Research Center. Transonic aerodynamics is a focus both because of its crucial role in determining the success of aeronautical systems and because cryogenic wind tunnels are especially applicable to the transonics problem. The paper also provides historical perspective and technical background for cryogenic tunnels, culminating in a brief review of cryogenic wind tunnel projects around the world. An appendix is included to provide up to date information on testing techniques that have been developed for the cryogenic tunnels at Langley Research Center. In order to be as inclusive and as current as possible, the appendix is less formal than the main body of the paper. It is anticipated that this paper will be of particular value to the technical layman who is inquisitive as to the value of, and need for, cryogneic tunnels

    Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane

    Get PDF
    The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented

    Configuration heating for a hypersonic research airplane concept having a 70 deg swept double-delta wing

    Get PDF
    The heating on a candidate hypersonic research airplane configuration has been examined experimentally at Mach 6 by the phase-change-paint technique. The configuration has a double-delta wing with tip fins. Phase-change-paint diagrams give heating data for the model top, side, and bottom, with and without deflected elevons for an angle-of-attack range of 0 deg to 24 deg. Nominal Reynolds numbers are on the order of 15,000,000 with supplementary data at length Reynolds number of 4,000,000, which moves the model from the predominantly turbulent into the predominantly laminar regime. Also, intermediate Reynolds numbers were investigated on the lee side for one angle of attack

    A fan pressure ratio correlation in terms of Mach number and Reynolds number for the Langley 0.3 meter transonic cryogenic tunnel

    Get PDF
    Calibration data for the two dimensional test section of the Langley 0.3 Meter Transonic Cryogenic Tunnel were used to develop a Mach number-Reynolds number correlation for the fan pressure ratio in terms of test section conditions. Well established engineering relationships combined to form an equation which is functionally analogous to the correlation. A geometric loss coefficient which is independent of Reynolds number or Mach number was determined. Present and anticipated uses of this concept include improvement of tunnel control schemes, comparison of efficiencies for operationally similar wind tunnels, prediction of tunnel test conditions and associated energy usage, and determination of Reynolds number scaling laws for similar fluid flow systems

    Hypersonic Airbreathing Missile

    Get PDF
    A hypersonic airbreathing missile using dual mode scramjet engines for propulsion is described. The fuselage is constructed of a material with a high heat sink capacity and is covered with a thermal protective shield and lined with an internal insulating blanket. The engine airframe integration uses the flat lower portion of the lower fuselage to precompress the air entering the scramjet engines. The precompression of air entering the scramjet inlets increases as the angles of attack. This feature results in a highly maneuverable missile which can accelerate as it banks into a turn
    corecore