21,323 research outputs found
Proposals which speed-up function-space MCMC
Inverse problems lend themselves naturally to a Bayesian formulation, in
which the quantity of interest is a posterior distribution of state and/or
parameters given some uncertain observations. For the common case in which the
forward operator is smoothing, then the inverse problem is ill-posed.
Well-posedness is imposed via regularisation in the form of a prior, which is
often Gaussian. Under quite general conditions, it can be shown that the
posterior is absolutely continuous with respect to the prior and it may be
well-defined on function space in terms of its density with respect to the
prior. In this case, by constructing a proposal for which the prior is
invariant, one can define Metropolis-Hastings schemes for MCMC which are
well-defined on function space, and hence do not degenerate as the dimension of
the underlying quantity of interest increases to infinity, e.g. under mesh
refinement when approximating PDE in finite dimensions. However, in practice,
despite the attractive theoretical properties of the currently available
schemes, they may still suffer from long correlation times, particularly if the
data is very informative about some of the unknown parameters. In fact, in this
case it may be the directions of the posterior which coincide with the (already
known) prior which decorrelate the slowest. The information incorporated into
the posterior through the data is often contained within some
finite-dimensional subspace, in an appropriate basis, perhaps even one defined
by eigenfunctions of the prior. We aim to exploit this fact and improve the
mixing time of function-space MCMC by careful rescaling of the proposal. To
this end, we introduce two new basic methods of increasing complexity,
involving (i) characteristic function truncation of high frequencies and (ii)
hessian information to interpolate between low and high frequencies
Deterministic Mean-field Ensemble Kalman Filtering
The proof of convergence of the standard ensemble Kalman filter (EnKF) from
Legland etal. (2011) is extended to non-Gaussian state space models. A
density-based deterministic approximation of the mean-field limit EnKF
(DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given
a certain minimal order of convergence between the two, this extends
to the deterministic filter approximation, which is therefore asymptotically
superior to standard EnKF when the dimension . The fidelity of
approximation of the true distribution is also established using an extension
of total variation metric to random measures. This is limited by a Gaussian
bias term arising from non-linearity/non-Gaussianity of the model, which exists
for both DMFEnKF and standard EnKF. Numerical results support and extend the
theory
Multilevel Particle Filters for L\'evy-driven stochastic differential equations
We develop algorithms for computing expectations of the laws of models
associated to stochastic differential equations (SDEs) driven by pure L\'evy
processes. We consider filtering such processes and well as pricing of path
dependent options. We propose a multilevel particle filter (MLPF) to address
the computational issues involved in solving these continuum problems. We show
via numerical simulations and theoretical results that under suitable
assumptions of the discretization of the underlying driving L\'evy proccess,
our proposed method achieves optimal convergence rates. The cost to obtain MSE
scales like for our method, as compared with
the standard particle filter
A hybrid asymptotic-modal analysis of the EM scattering by an open-ended S-shaped rectangular waveguide cavity
The electromagnetic fields (EM) backscatter from a 3-dimensional perfectly conducting S-shaped open-ended cavity with a planar interior termination is analyzed when it is illuminated by an external plane wave. The analysis is based on a self-consistent multiple scattering method which accounts for the multiple wave interactions between the open end and the interior termination. The scattering matrices which described the reflection and transmission coefficients of the waveguide modes reflected and transmitted at each junction between the different waveguide sections, as well at the scattering from the edges at the open end are found via asymptotic high frequency methods such as the geometrical and physical theories of diffraction used in conjunction with the equivalent current method. The numerical results for an S-shaped inlet cavity are compared with the backscatter from a straight inlet cavity; the backscattered patterns are different because the curvature of an S-shaped inlet cavity redistributes the energy reflected from the interior termination in a way that is different from a straight inlet cavity
Spectrum of single-photon emission and scattering in cavity optomechanics
We present an analytic solution describing the quantum state of a single
photon after interacting with a moving mirror in a cavity. This includes
situations when the photon is initially stored in a cavity mode as well as when
the photon is injected into the cavity. In addition, we obtain the spectrum of
the output photon in the resolved-sideband limit, which reveals spectral
features of the single-photon strong-coupling regime in this system. We also
clarify the conditions under which the phonon sidebands are visible and the
photon-state frequency shift can be resolved.Comment: 5 pages, 5 figure
- …