13,561 research outputs found

    Exotic fermion multiplets as a solution to baryon asymmetry, dark matter and neutrino masses

    Full text link
    We propose an extension to the standard model where three exotic fermion 5-plets and one scalar 6-plet are added to the particle content. By demanding that all interactions are renormalizable and standard model gauge invariant, we show that the lightest exotic particle in this model can be a dark matter candidate as long as the new 6-plet scalar does not develop a nonzero vacuum expectation value. Furthermore, light neutrino masses are generated radiatively at one-loop while the baryon asymmetry is produced by the CP-violating decays of the second lightest exotic particle. We have demonstrated using concrete examples that there is a parameter space where a consistent solution to the problems of baryon asymmetry, dark matter and neutrino masses can be obtained.Comment: 17 pages, 2 figures (REVTeX4.1), v2: some refs added, v3: typos corrected, Sec.VI.B, C modified, this version to appear in PR

    Shot Noise in Anyonic Mach-Zehnder Interferometer

    Get PDF
    We show how shot noise in an electronic Mach-Zehnder interferometer in the fractional quantum Hall regime probes the charge and statistics of quantum Hall quasiparticles. The dependence of the noise on the magnetic flux through the interferometer allows for a simple way to distinguish Abelian from non-Abelian quasiparticle statistics. In the Abelian case, the Fano factor (in units of the electron charge) is always lower than unity. In the non-Abelian case, the maximal Fano factor as a function of the magnetic flux exceeds one.Comment: references adde

    National scale modelling to test UK population growth and infrastructure scenarios

    Get PDF
    This paper describes an exploratory methodology used to study the national scale issues of population growth and infrastructure implementation across the UK. The project was carried out for the Government Office for Science in 2015, focussing on two key questions: how could a “spatially driven” scenario provoke new thinking on accommodating forecast growth, and; what would be the impact of transport infrastructure investments within this context. Addressing these questions required the construction of a national scale spatial model that also needed to integrate datasets on population and employment. Models were analysed and profiled initially to identify existing relationships between the distribution of population and employment against the spatial network. Based on these profiles, an experimental methodology was used to firstly identify cities with the potential to accommodate growth, then secondly to allocate additional population proportionally. This raises important questions for discussion around which cities provide the benchmark for growth and why, as well as what the optimal spatial conditions for population growth may be, and how this growth should be accommodated locally. Later the model was used to study the impact of High Speed Rail. As these proposed infrastructure changes improve service (capacity, frequency, journey time), rather than creating new topological connections, the model was adapted to be able to produce time based catchments as an output. These catchments could then be expressed in terms of the workforce population within an hour of every city (a potential travel to work area), as well as the number of employment opportunities within an hour of every household

    Cluster, Classify, Regress: A General Method For Learning Discountinous Functions

    Full text link
    This paper presents a method for solving the supervised learning problem in which the output is highly nonlinear and discontinuous. It is proposed to solve this problem in three stages: (i) cluster the pairs of input-output data points, resulting in a label for each point; (ii) classify the data, where the corresponding label is the output; and finally (iii) perform one separate regression for each class, where the training data corresponds to the subset of the original input-output pairs which have that label according to the classifier. It has not yet been proposed to combine these 3 fundamental building blocks of machine learning in this simple and powerful fashion. This can be viewed as a form of deep learning, where any of the intermediate layers can itself be deep. The utility and robustness of the methodology is illustrated on some toy problems, including one example problem arising from simulation of plasma fusion in a tokamak.Comment: 12 files,6 figure

    Quantum fluctuations in coupled dark solitons in trapped Bose-Einstein condensates

    Full text link
    We show that the quantum fluctuations associated with the Bogoliubov quasiparticle vacuum can be strongly concentrated inside dark solitons in a trapped Bose Einstein condensate. We identify a finite number of anomalous modes that are responsible for such quantum phenomena. The fluctuations in these anomalous modes correspond to the `zero-point' oscillations in coupled dark solitons.Comment: 4 pages, 3 figure

    Leptogenesis implications in models with Abelian family symmetry and one extra real Higgs singlet

    Get PDF
    We show that the neutrino models, as suggested by Low, which have an additional Abelian family symmetry and a real Higgs singlet to the default see-saw do not hinder the possibility of successful thermal leptogenesis. For these models (neglecting radiative effects), we have investigated the situation of strong washout in both the one-flavor approximation and when flavor effects are included. The result is that while such models predict that theta_{13}=0 and that one light neutrino to be massless, they do not modify or provide significant constraints on the typical leptogenesis scenario where the final asymmetry is dominated by the decays of the lightest right-handed neutrinos.Comment: 18 pages, RevTeX4, accepted by Phys. Rev. D. v2: minor corrections, note and 1 ref. added, same content as published versio

    Photon collection from a trapped ion--cavity system

    Full text link
    We present the design and implementation of a trapped ion cavity QED system. A single ytterbium ion is confined by a micron-scale ion trap inside a 2 mm optical cavity. The ion is coherently pumped by near resonant laser light while the cavity output is monitored as a function of pump intensity and cavity detuning. We observe a Purcell enhancement of scattered light into the solid angle subtended by the optical cavity, as well as a three-peak structure arising from strongly driving the atom. This system can be integrated into existing atom{photon quantum network protocols and is a pathway towards an efficient atom{photon quantum interface
    corecore