823 research outputs found

    SO and SiS Emission Tracing an Embedded Planet and Compact 12^{12}CO and 13^{13}CO Counterparts in the HD 169142 Disk

    Get PDF
    Planets form in dusty, gas-rich disks around young stars, while at the same time, the planet formation process alters the physical and chemical structure of the disk itself. Embedded planets will locally heat the disk and sublimate volatile-rich ices, or in extreme cases, result in shocks that sputter heavy atoms such as Si from dust grains. This should cause chemical asymmetries detectable in molecular gas observations. Using high-angular-resolution ALMA archival data of the HD 169142 disk, we identify compact SO J=88_8-77_7 and SiS J=19-18 emission coincident with the position of a ∼{\sim}2 MJup_{\rm{Jup}} planet seen as a localized, Keplerian NIR feature within a gas-depleted, annular dust gap at ≈{\approx}38 au. The SiS emission is located along an azimuthal arc and has a similar morphology as a known 12^{12}CO kinematic excess. This is the first tentative detection of SiS emission in a protoplanetary disk and suggests that the planet is driving sufficiently strong shocks to produce gas-phase SiS. We also report the discovery of compact 12^{12}CO and 13^{13}CO J=3-2 emission coincident with the planet location. Taken together, a planet-driven outflow provides the best explanation for the properties of the observed chemical asymmetries. We also resolve a bright, azimuthally-asymmetric SO ring at ≈{\approx}24 au. While most of this SO emission originates from ice sublimation, its asymmetric distribution implies azimuthal temperature variations driven by a misaligned inner disk or planet-disk interactions. Overall, the HD 169142 disk shows several distinct chemical signatures related to giant planet formation and presents a powerful template for future searches of planet-related chemical asymmetries in protoplanetary disks.Comment: 22 pages, 12 figures, accepted for publication in ApJ

    Primary Beam Shape Calibration from Mosaicked, Interferometric Observations

    Full text link
    Image quality in mosaicked observations from interferometric radio telescopes is strongly dependent on the accuracy with which the antenna primary beam is calibrated. The next generation of radio telescope arrays such as the Allen Telescope Array (ATA) and the Square Kilometer Array (SKA) have key science goals that involve making large mosaicked observations filled with bright point sources. We present a new method for calibrating the shape of the telescope's mean primary beam that uses the multiple redundant observations of these bright sources in the mosaic. The method has an analytical solution for simple Gaussian beam shapes but can also be applied to more complex beam shapes through χ2\chi^2 minimization. One major benefit of this simple, conceptually clean method is that it makes use of the science data for calibration purposes, thus saving telescope time and improving accuracy through simultaneous calibration and observation. We apply the method both to 1.43 GHz data taken during the ATA Twenty Centimeter Survey (ATATS) and to 3.14 GHz data taken during the ATA's Pi Gigahertz Sky Survey (PiGSS). We find that the beam's calculated full width at half maximum (FWHM) values are consistent with the theoretical values, the values measured by several independent methods, and the values from the simulation we use to demonstrate the effectiveness of our method on data from future telescopes such as the expanded ATA and the SKA. These results are preliminary, and can be expanded upon by fitting more complex beam shapes. We also investigate, by way of a simulation, the dependence of the accuracy of the telescope's FWHM on antenna number. We find that the uncertainty returned by our fitting method is inversely proportional to the number of antennas in the array.Comment: Accepted by PASP. 8 pages, 8 figure

    Tracing snowlines and C/O ratio in a planet-hosting disk: ALMA molecular line observations towards the HD169142 disk

    Full text link
    The composition of a forming planet is set by the material it accretes from its parent protoplanetary disk. Therefore, it is crucial to map the chemical make-up of the gas in disks to understand the chemical environment of planet formation. This paper presents molecular line observations taken with the Atacama Large Millimeter/submillimeter Array of the planet-hosting disk around the young star HD 169142. We detect N2H+, CH3OH, [CI], DCN, CS, C34S, 13CS, H2CS, H2CO, HC3N and c-C3H2 in this system for the first time. Combining these data with the recent detection of SO and previously published DCO+ data, we estimate the location of H2O and CO snowlines and investigate radial variations in the gas phase C/O ratio. We find that the HD 169142 disk has a relatively low N2H+ flux compared to the disks around Herbig stars HD 163296 and MWC 480 indicating less CO freeze-out and place the CO snowline beyond the millimetre disk at ~150 au. The detection of CH3OH from the inner disk is consistent with the H2O snowline being located at the edge of the central dust cavity at ~20 au. The radially varying CS/SO ratio across the proposed H2O snowline location is consistent with this interpretation. Additionally, the detection of CH3OH in such a warm disk adds to the growing evidence supporting the inheritance of complex ices in disks from the earlier, colder stages of star formation. Finally, we propose that the giant HD 169142 b located at 37 au is forming between the CO2 and H2O snowlines where the local elemental make of the gas is expected to have C/O=1.0.Comment: Accepted A&A 13th August 202

    The Physical Nature of Rest-UV Galaxy Morphology During the Peak Epoch of Galaxy Formation

    Get PDF
    Motivated by the irregular and little-understood morphologies of z ~ 2 - 3 galaxies, we use non-parametric coefficents to quantify the morphologies of 216 galaxies which have been spectroscopically confirmed to lie at redshifts z = 1.8 - 3.4 in the GOODS-N field. Using measurements of ultraviolet (UV) and optical spectral lines, multi-band photometric data, and stellar population models we statistically assess possible correlations between galaxy morphology and physical observables such as stellar mass, star formation rate, and the strength of galaxy-scale outflows. We find evidence that dustier galaxies have more nebulous UV morphologies and that larger, more luminous galaxies may drive stronger outflows, but otherwise conclude that UV morphology is either statistically decoupled from the majority of physical observables or determined by too complex a combination of physical processes to provide characterizations with predictive power. Given the absence of strong correlations between UV morphology and physical parameters such as star formation rates, we are therefore unable to support the hypothesis that morphologically irregular galaxies predominantly represent major galaxy mergers. Comparing galaxy samples, we find that IR-selected BzK galaxies and radio-selected submillimeter galaxies (SMGs) have UV morphologies similar to the optically selected sample, while distant red galaxies (DRGs) are more nebulous.Comment: 26 pages. Accepted for publication in the ApJ. Version with full resolution figures is available at http://www.astro.caltech.edu/~drlaw/Papers/UVmorph.pd

    Integral Field Spectroscopy of High-Redshift Star Forming Galaxies with Laser Guided Adaptive Optics: Evidence for Dispersion-Dominated Kinematics

    Get PDF
    We present early results from an ongoing study of the kinematic structure of star-forming galaxies at redshift z ~ 2 - 3 using integral-field spectroscopy of rest-frame optical nebular emission lines in combination with Keck laser guide star adaptive optics (LGSAO). We show kinematic maps of 3 target galaxies Q1623-BX453, Q0449-BX93, and DSF2237a-C2 located at redshifts z = 2.1820, 2.0067, and 3.3172 respectively, each of which is well-resolved with a PSF measuring approximately 0.11 - 0.15 arcsec (~ 900 - 1200 pc at z ~ 2-3) after cosmetic smoothing. Neither galaxy at z ~ 2 exhibits substantial kinematic structure on scales >~ 30 km/s; both are instead consistent with largely dispersion-dominated velocity fields with sigma ~ 80 km/s along any given line of sight into the galaxy. In contrast, DSF2237a-C2 presents a well-resolved gradient in velocity over a distance of ~ 4 kpc with peak-to-peak amplitude of 140 km/s. It is unlikely that DSF2237a-C2 represents a dynamically cold rotating disk of ionized gas as the local velocity dispersion of the galaxy (sigma = 79 km/s) is comparable to the observed shear. Using extant multi-wavelength spectroscopy and photometry we relate these kinematic data to physical properties such as stellar mass, gas fraction, star formation rate, and outflow kinematics and consider the applicability of current galaxy formation models.[Abridged]Comment: 19 pages, 10 figures (5 color); accepted for publication in ApJ. Version with full-resolution figures is available at http://www.astro.caltech.edu/~drlaw/Papers/OSIRIS_data1.pd

    Transfers of Water Use in Colorado

    Get PDF
    iv, 52 p. : ill., maps ; 28 cmhttps://scholar.law.colorado.edu/books_reports_studies/1099/thumbnail.jp
    • …
    corecore