193 research outputs found

    Brief communication: Supraglacial debris-cover changesin the Caucasus mountains

    Full text link
    Debris cover on glaciers can significantly alter melt, and hence, glacier mass balance and runoff. Debris coverage typically increases with shrinking glaciers. Here, we present data on debris cover and its changes for 559 glaciers located in different regions of the Greater Caucasus mountains based on 1986, 2000 and 2014 Landsat and SPOT images. Over this time period, the total glacier area decreased from 691.5km2 to 590.0km2 (0.52%yr-1. Thereby, the debris covered area increased from ~11 to ~24% on the northern, and from ~4 to 10% on the southern macro-slope between 1986 and 2014. Overall, we found 18% debris cover for the year 2014. With the glacier shrinkage, debris-covered area and the number of debris-covered glaciers increased as a function of elevation, slope, aspect, glacier morphological type, Little Ice Age moraines, and lithology

    Correlations in the low-temperature phase of the two-dimensional XY model

    Full text link
    Monte Carlo simulations of the two-dimensional XY model are performed in a square geometry with fixed boundary conditions. Using a conformal mapping it is very easy to deduce the exponent eta_sigma(T) of the order parameter correlation function at any temperature in the critical phase of the model. The temperature behaviour of eta_sigma(T) is obtained numerically with a good accuracy up to the Kosterlitz-Thouless transition temperature. At very low temperatures, a good agreement is found with Berezinskii's harmonic approximation. Surprisingly, we show some evidence that there are no logarithmic corrections to the behaviour of the order parameter density profile (with symmetry breaking surface fields) at the Kosterlitz-Thouless transition temperature.Comment: 7 pages, 2 eps figure

    Static Solitons of the Sine-Gordon Equation and Equilibrium Vortex Structure in Josephson Junctions

    Full text link
    The problem of vortex structure in a single Josephson junction in an external magnetic field, in the absence of transport currents, is reconsidered from a new mathematical point of view. In particular, we derive a complete set of exact analytical solutions representing all the stationary points (minima and saddle-points) of the relevant Gibbs free-energy functional. The type of these solutions is determined by explicit evaluation of the second variation of the Gibbs free-energy functional. The stable (physical) solutions minimizing the Gibbs free-energy functional form an infinite set and are labelled by a topological number Nv=0,1,2,... Mathematically, they can be interpreted as nontrivial ''vacuum'' (Nv=0) and static topological solitons (Nv=1,2,...) of the sine-Gordon equation for the phase difference in a finite spatial interval: solutions of this kind were not considered in previous literature. Physically, they represent the Meissner state (Nv=0) and Josephson vortices (Nv=1,2,...). Major properties of the new physical solutions are thoroughly discussed. An exact, closed-form analytical expression for the Gibbs free energy is derived and analyzed numerically. Unstable (saddle-point) solutions are also classified and discussed.Comment: 17 pages, 4 Postscript figure

    Instrumentation for study of nanomaterials in NPI REZ (New laboratory for material study in Nuclear Physics Institute in REZ)

    Get PDF
    Nano-sized materials become irreplaceable component of a number of devices for every aspect of human life. The development of new materials and deepening of the current knowledge require a set of specialized techniques-deposition methods for preparation/modification of the materials and analytical tools for proper understanding of their properties. A thoroughly equipped research centers become the requirement for the advance and development not only in nano-sized field. The Center of Accelerators and Nuclear Analytical Methods (CANAM) in the Nuclear Physics Institute (NPI) comprises a unique set of techniques for the synthesis or modification of nanostructured materials and systems, and their characterization using ion beam, neutron beam and microscopy imaging techniques. The methods are used for investigation of a broad range of nano-sized materials and structures based on metal oxides, nitrides, carbides, carbon-based materials (polymers, fullerenes, graphenes, etc.) and nano-laminate composites (MAX phases). These materials can be prepared at NPI using ion beam sputtering, physical vapor deposition and molecular beam epitaxy. Based on the deposition method and parameters, the samples can be tuned to possess specific properties, e.g., composition, thickness (nm-Ī¼m), surface roughness, optical and electrical properties, etc. Various nuclear analytical methods are applied for the sample characterization. RBS, RBS-channeling, PIXE, PIGE, micro-beam analyses and Transmission Spectroscopy are accomplished at the Tandetron 4130MC accelerator, and additionally the Neutron Depth Profiling (NDP) and Prompt Gamma Neutron Activation (PGNA) analyses are performed at an external neutron beam from the LVR-15 research reactor. The multimode AFM facility provides further surface related information, magnetic/electrical properties with nano-metric precision, nano-indentation, etc

    Levy stable distributions via associated integral transform

    Full text link
    We present a method of generation of exact and explicit forms of one-sided, heavy-tailed Levy stable probability distributions g_{\alpha}(x), 0 \leq x < \infty, 0 < \alpha < 1. We demonstrate that the knowledge of one such a distribution g_{\alpha}(x) suffices to obtain exactly g_{\alpha^{p}}(x), p=2, 3,... Similarly, from known g_{\alpha}(x) and g_{\beta}(x), 0 < \alpha, \beta < 1, we obtain g_{\alpha \beta}(x). The method is based on the construction of the integral operator, called Levy transform, which implements the above operations. For \alpha rational, \alpha = l/k with l < k, we reproduce in this manner many of the recently obtained exact results for g_{l/k}(x). This approach can be also recast as an application of the Efros theorem for generalized Laplace convolutions. It relies solely on efficient definite integration.Comment: 12 pages, typos removed, references adde

    Thermoacoustic tomography with an arbitrary elliptic operator

    Full text link
    Thermoacoustic tomography is a term for the inverse problem of determining of one of initial conditions of a hyperbolic equation from boundary measurements. In the past publications both stability estimates and convergent numerical methods for this problem were obtained only under some restrictive conditions imposed on the principal part of the elliptic operator. In this paper logarithmic stability estimates are obatined for an arbitrary variable principal part of that operator. Convergence of the Quasi-Reversibility Method to the exact solution is also established for this case. Both complete and incomplete data collection cases are considered.Comment: 16 page
    • ā€¦
    corecore