449 research outputs found

    Research Notes : United States : Genes for resistance to Phytophthora megasperma f. sp. glycinea in PI 273483D, PI 64747, PI 274212, PI 82312N, and PI 340046

    Get PDF
    Several years ago, we identified seven plant introductions resistant to the 16 races of Phytophthora megasperma f. sp. glycinea Kuan and Erwin (Pmg) known at that time. Each of these was crossed to the eight cultivars in Table 1 to determine how resistance was controlled. They were not crossed to cultivars that contained Rps2 or Rps5 because Rps2 was found using root inoculation in a liquid culture solution, and Rps5 was described after this study was started

    On Functional Activations in Deep Neural Networks

    Full text link
    Background: Deep neural networks have proven to be powerful computational tools for modeling, prediction, and generation. However, the workings of these models have generally been opaque. Recent work has shown that the performance of some models are modulated by overlapping functional networks of connections within the models. Here the techniques of functional neuroimaging are applied to an exemplary large language model to probe its functional structure. Methods: A series of block-designed task-based prompt sequences were generated to probe the Facebook Galactica-125M model. Tasks included prompts relating to political science, medical imaging, paleontology, archeology, pathology, and random strings presented in an off/on/off pattern with prompts about other random topics. For the generation of each output token, all layer output values were saved to create an effective time series. General linear models were fit to the data to identify layer output values which were active with the tasks. Results: Distinct, overlapping networks were identified with each task. Most overlap was observed between medical imaging and pathology networks. These networks were repeatable across repeated performance of related tasks, and correspondence of identified functional networks and activation in tasks not used to define the functional networks was shown to accurately identify the presented task. Conclusion: The techniques of functional neuroimaging can be applied to deep neural networks as a means to probe their workings. Identified functional networks hold the potential for use in model alignment, modulation of model output, and identifying weights to target in fine-tuning

    In utero exposure to Δ9‐tetrahydrocannabinol leads to postnatal catch‐up growth and dysmetabolism in the adult rat liver

    Get PDF
    The rates of gestational cannabis use have increased despite limited evidence for its safety in fetal life. Recent animal studies demonstrate that prenatal exposure to Δ9‐tetrahydrocannabinol (Δ9‐THC, the psychoactive component of cannabis) promotes intrauterine growth restriction (IUGR), culminating in postnatal metabolic deficits. Given IUGR is associated with impaired hepatic function, we hypothesized that Δ9‐THC offspring would exhibit hepatic dyslipidemia. Pregnant Wistar rat dams received daily injections of vehicular control or 3 mg/kg Δ9‐THC i.p. from embry-onic day (E) 6.5 through E22. Exposure to Δ9‐THC decreased the liver to body weight ratio at birth, followed by catch‐up growth by three weeks of age. At six months, Δ9‐THC‐exposed male offspring exhibited increased visceral adiposity and higher hepatic triglycerides. This was instigated by augmented expression of enzymes involved in triglyceride synthesis (ACCα, SCD, FABP1, and DGAT2) at three weeks. Furthermore, the expression of hepatic DGAT1/DGAT2 was sustained at six months, concomitant with mitochondrial dysfunction (i.e., elevated p66shc) and oxidative stress. Interest-ingly, decreases in miR‐203a‐3p and miR‐29a/b/c, both implicated in dyslipidemia, were also observed in these Δ9‐THC‐exposed offspring. Collectively, these findings indicate that prenatal Δ9‐ THC exposure results in long‐term dyslipidemia associated with enhanced hepatic lipogenesis. This is attributed by mitochondrial dysfunction and epigenetic mechanisms

    Inherent-Structure Dynamics and Diffusion in Liquids

    Full text link
    The self-diffusion constant D is expressed in terms of transitions among the local minima of the potential (inherent structure, IS) and their correlations. The formulae are evaluated and tested against simulation in the supercooled, unit-density Lennard-Jones liquid. The approximation of uncorrelated IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST are associated with a hopping mechanism, the condition D ~ D_{0} provides a new way to identify the crossover to hopping. The results suggest that theories of diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR

    The Potential Energy Landscape and Mechanisms of Diffusion in Liquids

    Full text link
    The mechanism of diffusion in supercooled liquids is investigated from the potential energy landscape point of view, with emphasis on the crossover from high- to low-T dynamics. Molecular dynamics simulations with a time dependent mapping to the associated local mininum or inherent structure (IS) are performed on unit-density Lennard-Jones (LJ). New dynamical quantities introduced include r2_{is}(t), the mean-square displacement (MSD) within a basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t) the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t) posesses an interval of linear t-dependence allowing calculation of an intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds the time, tau_{pl}, needed for the system to explore the basin, indicating the action of barriers. The distinction between motion among the IS below T_{c} and saddle, or border dynamics above T_{c} is discussed.Comment: submitted to pr

    Heterogeneities in Supercooled liquids: A Density Functional Study

    Get PDF
    A metastable state, characterized by a low degree of mass localization is identified using Density Functional Theory. This free energy minimum, located through the proper evaluation of the competing terms in the free energy functional, is independent of the specific form of the DFT used. Computer simulation results on particle motion indicate that this heterogeneous state corresponds to the supercooled state.Comment: 10 pages, 6 figure

    Curvature fluctuations and Lyapunov exponent at Melting

    Get PDF
    We calculate the maximal Lyapunov exponent in constant-energy molecular dynamics simulations at the melting transition for finite clusters of 6 to 13 particles (model rare-gas and metallic systems) as well as for bulk rare-gas solid. For clusters, the Lyapunov exponent generally varies linearly with the total energy, but the slope changes sharply at the melting transition. In the bulk system, melting corresponds to a jump in the Lyapunov exponent, and this corresponds to a singularity in the variance of the curvature of the potential energy surface. In these systems there are two mechanisms of chaos -- local instability and parametric instability. We calculate the contribution of the parametric instability towards the chaoticity of these systems using a recently proposed formalism. The contribution of parametric instability is a continuous function of energy in small clusters but not in the bulk where the melting corresponds to a decrease in this quantity. This implies that the melting in small clusters does not lead to enhanced local instability.Comment: Revtex with 7 PS figures. To appear in Phys Rev
    • 

    corecore