92 research outputs found

    High-throughput functional metagenomics for the discovery of glycan metabolizing pathways

    Get PDF
    Glycans are widely distributed in nature. Produced by almost all organisms, they are involved in numerous cellular processes, such as energy supply and storage, cell structuration, protein maturation and signalling, and cell recognition. Glycans are thus key elements mediating the interactions between mammals, plants, bacteria, fungi and even viruses. They also represent a reliable source of carbon for microbes, which have developed complex strategies to face their structural diversity and to harvest them. However between 70 and 99% of these microorganisms are still uncultured, while they represent a goldmine for the discovery of new enzymes. In order to boost their identification and characterization, a functional metagenomic approach was developed, based on the design of various high-throughput, robust and sensitive screening strategies. The functional potential of Gbp of metagenomic DNA from various origins was explored, revealing dozens of novel enzyme families and functions. Integration of biochemical, structural, meta-omic and omic data allowed us to decipher, from the molecular to the ecosystemic scale, novel mechanisms of plant, microbial and mammal glycan metabolization. These new metabolic pathways involve batteries of glycoside-hydrolases, glycoside-phosphorylases and sugar transporters. These fascinating proteins appear as new targets to control host-microbe interactions. They also constitute very efficient biotechnological tools for biorefineries and synthetic biology

    Investigating Host Microbiota Relationships Through Functional Metagenomics

    Get PDF
    The human Intestinal mucus is formed by glycoproteins, the O- and N-linked glycans which constitute a crucial source of carbon for commensal gut bacteria, especially when deprived of dietary glycans of plant origin. In recent years, a dozen carbohydrate-active enzymes from cultivated mucin degraders have been characterized. But yet, considering the fact that uncultured species predominate in the human gut microbiota, these biochemical data are far from exhaustive. In this study, we used functional metagenomics to identify new metabolic pathways in uncultured bacteria involved in harvesting mucin glycans. First, we performed a high-throughput screening of a fosmid metagenomic library constructed from the ileum mucosa microbiota using chromogenic substrates. The screening resulted in the isolation of 124 clones producing activities crucial in the degradation of human O- and N-glycans, namely sialidases, beta-D-N-acetyl-glucosaminidase, beta-D-N-acetyl-galactosaminidase, and/or beta-D-mannosidase. Thirteen of these clones were selected based on their diversified functional profiles and were further analyzed on a secondary screening. This step consisted of lectin binding assays to demonstrate the ability of the clones to degrade human intestinal mucus. In total, the structural modification of several mucin motifs, sialylated mucin ones in particular, was evidenced for nine clones. Sequencing their metagenomic loci highlighted complex catabolic pathways involving the complementary functions of glycan sensing, transport, hydrolysis, deacetylation, and deamination, which were sometimes associated with amino acid metabolism machinery. These loci are assigned to several Bacteroides and Feacalibacterium species highly prevalent and abundant in the gut microbiome and explain the metabolic flexibility of gut bacteria feeding both on dietary and human glycans

    Investigating host-microbiome interactions by droplet based microfluidics

    Get PDF
    Funder: Royal Society Newton fellowshipFunder: CAPES Scholarship - BrazilAbstract: Background: Despite the importance of the mucosal interface between microbiota and the host in gut homeostasis, little is known about the mechanisms of bacterial gut colonization, involving foraging for glycans produced by epithelial cells. The slow pace of progress toward understanding the underlying molecular mechanisms is largely due to the lack of efficient discovery tools, especially those targeting the uncultured fraction of the microbiota. Results: Here, we introduce an ultra-high-throughput metagenomic approach based on droplet microfluidics, to screen fosmid libraries. Thousands of bacterial genomes can be covered in 1 h of work, with less than ten micrograms of substrate. Applied to the screening of the mucosal microbiota for β-N-acetylgalactosaminidase activity, this approach allowed the identification of pathways involved in the degradation of human gangliosides and milk oligosaccharides, the structural homologs of intestinal mucin glycans. These pathways, whose prevalence is associated with inflammatory bowel diseases, could be the result of horizontal gene transfers with Bacteroides species. Such pathways represent novel targets to study the microbiota-host interactions in the context of inflammatory bowel diseases, in which the integrity of the mucosal barrier is impaired. Conclusion: By compartmentalizing experiments inside microfluidic droplets, this method speeds up and miniaturizes by several orders of magnitude the screening process compared to conventional approaches, to capture entire metabolic pathways from metagenomic libraries. The method is compatible with all types of (meta)genomic libraries, and employs a commercially available flow cytometer instead of a custom-made sorting system to detect intracellular or extracellular enzyme activities. This versatile and generic workflow will accelerate experimental exploration campaigns in functional metagenomics and holobiomics studies, to further decipher host-microbiota relationships. BEyZgKg3YsWtKJ_ei8gXkiVideo Abstrac

    Etude morphofonctionnelle et evolutive de l'adaptation au fouissage chez Arvicola terrestris scherman (mammalia, Rodentia)

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology

    No full text
    The rapid expansion of new sequencing technologies has enabled large-scale functional exploration of numerous microbial ecosystems, by establishing catalogs of functional genes and by comparing their prevalence in various microbiota. However, sequence similarity does not necessarily reflect functional conservation, since just a few modifications in a gene sequence can have a strong impact on the activity and the specificity of the corresponding enzyme or the recognition for a sensor. Similarly, some microorganisms harbor certain identified functions yet do not have the expected related genes in their genome. Finally, there are simply too many protein families whose function is not yet known, even though they are highly abundant in certain ecosystems. In this context, the discovery of new protein functions, using either sequence-based or activity-based approaches, is of crucial importance for the discovery of new enzymes and for improving the quality of annotation in public databases. This paper lists and explores the latest advances in this field, along with the challenges to be addressed, particularly where microfluidic technologies are concerned

    Biochemical identification of the catalytic residues of a glycoside hydrolase family 120 β-xylosidase, involved in xylooligosaccharide metabolisation by gut bacteria

    No full text
    In pressThe β-xylosidase B from Bifidobacterium adolescentis ATCC15703 belongs to the newly characterized family 120 of glycoside hydrolases. In order to investigate its catalytic mechanism, an extensive kinetic study of the wild-type enzyme and mutants targeting the three highly conserved residues Asp393, Glu416 and Glu364 was performed. NMR analysis of the xyloside hydrolysis products, the change of the reaction rate-limiting step for the Glu416 mutants, the pH dependency of E416A activity and its chemical rescue allowed to demonstrate that this GH120 enzyme uses a retaining mechanism of glycoside hydrolysis, Glu416 playing the role of acid/base catalyst and Asp393 that of nucleophile

    Identification of Glycoside Transporters From the Human Gut Microbiome

    No full text
    International audienceTransport is a crucial step in the metabolism of glycosides by bacteria, which is itself key for microbiota function and equilibrium. However, most transport proteins are function-unknown or only predicted, limiting our understanding of how bacteria utilize glycosides. Here, we present an activity-based screening method to identify functional glycoside transporters from microbiomes. The method is based on the co-expression in Escherichia coli of genes encoding transporters and carbohydrate-active enzymes (CAZymes) from metagenomic polysaccharide utilization loci (PULs) cloned in fosmids. To establish the proof of concept of the methodology, we used two different metagenomic libraries derived from human gut microbiota to select 18 E. coli clones whose metagenomic sequence contained at least one putative glycoside transporter and one functional CAZyme, identified by screening for various glycoside-hydrolase activities. Growth tests were performed on plant-derived glycosides, which are the target substrates of the CAZymes identified in each PUL. This led to the identification of 10 clones that are able to utilize oligosaccharides as sole carbon sources, thanks to the production of transporters from the PTS, ABC, MFS, and SusCD families. Six of the 10 hit clones contain only one transporter, providing direct experimental evidence that these transporters are functional. In the six cases where two transporters are present in the sequence of a clone, the transporters' function can be predicted from the flanking CAZymes or from similarity with transporters characterized previously, which facilitates further functional characterization. The results expand the understanding of how glycosides are selectively metabolized by bacteria and offers a new approach to screening for glycoside-transporter specificity toward oligosaccharides with defined structures
    • …
    corecore