36 research outputs found

    Studies on the Interaction of Isocyanides with Imines: Reaction Scope and Mechanistic Variations

    Get PDF
    The interaction of imines with isocyanides has been studied. The main product results from a sequential process involving the attack of two units of isocyanide, under Lewis acid catalysis, upon the carbon-nitrogen double bond of the imine to form the 4-membered ring system. The scope of the reaction regarding the imine and isocyanide ranges has been determined, and also some mechanistic variations and structural features have been described

    Heterocycle-Based Multicomponent Reactions in Drug Discovery: From Hit Finding to Rational Design

    Full text link
    In the context of the structural complexity necessary for a molecule to selectively display a therapeutical action and the requirements for suitable pharmacokinetics, a robust synthetic approach is essential. Typically, thousands of relatively similar compounds should be prepared along the drug discovery process. In this respect, heterocycle‐based multicomponent reactions offer advantages over traditional stepwise sequences in terms of synthetic economy, as well as the fast access to chemsets to study the structure activity relationships, the fine tuning of properties, and the preparation of larger amounts for preclinical phases. In this account, we briefly summarize the scientific methodology backing the research line followed by the group. We comment on the main results, clustered according to the targets and, finally, in the conclusion section, we offer a general appraisal of the situation and some perspectives regarding future directions in academic and private research

    New trimethoprim-like molecules: bacteriological evaluation and insights into their action

    Get PDF
    This work reports a detailed characterization of the antimicrobial profile of two trimethoprim-like molecules (compounds 1a and 1b) identified in previous studies. Both molecules displayed remarkable antimicrobial activity, particularly when combined with sulfamethoxazole. In disk difusion assays on Petri dish, compounds 1a and 1b showed synergistic effects with colistin. Specifically, in combinations with low concentrations of colistin very large increases in the activities of compounds 1a and 1b were determined, as demonstrated by alterations in the kinetics of bacterial growth despite only slight changes in the fractional inhibitory concentration index. The effect of colistin may be to increase the rate of antibiotic entry while reducing efflux pump activity. Compounds 1a and 1b were susceptible to extrusion by efflux pumps, whereas the inhibitor phenylalanine arginyl ß-naphthylamide (PAßN) exerted effects similar to those of colistin. The interactions between the target enzyme (dihydrofolate reductase), the coenzyme nicotinamide adenine dinucleotide phosphate (NADPH), and the studied molecules were explored using enzymology tools and computational chemistry. A model based on docking results is reported

    Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting beta-amyloid, tau, and cholinesterase pathologies

    Get PDF
    Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5bd have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5ad has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent AÎČ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5ad, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities

    Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis

    Get PDF
    Background: Giant-cell arteritis (GCA) is an inflammatory disease of large/medium-sized arteries, frequently involving the temporal arteries (TA). Inflammation-induced vascular remodelling leads to vaso-occlusive events. Circulating endothelin-1 (ET1) is increased in patients with GCA with ischaemic complications suggesting a role for ET-1 in vascular occlusion beyond its vasoactive function. Objective: To investigate whether ET-1 induces a migratory myofibroblastic phenotype in human TAderived vascular smooth muscle cells (VSMC) leading to intimal hyperplasia and vascular occlusion in GCA. Methods and results: Immunofluorescence/confocal microscopy showed increased ET-1 expression in GCA lesions compared with control arteries. In inflamed arteries, ET-1 was predominantly expressed by infiltrating mononuclear cells whereas ET receptors, particularly ET-1 receptor B (ETB R), were expressed by both mononuclear cells and VSMC. ET-1 increased TA-derived VSMC migration in vitro and α-smooth muscle actin (αSMA) expression and migration from the media to the intima in cultured TA explants. ET-1 promoted VSMC motility by increasing activation of focal adhesion kinase (FAK), a crucial molecule in the turnover of focal adhesions during cell migration. FAK activation resulted in Y397 autophosphorylation creating binding sites for Src kinases and the p85 subunit of PI3kinases which, upon ET-1 exposure, colocalised with FAK at the focal adhesions of migrating VSMC. Accordingly, FAK or PI3K inhibition abrogated ET-1-induced migration in vitro. Consistently, ET-1 receptor A and ETB R antagonists reduced αSMA expression and delayed VSMC outgrowth from cultured GCA-involved artery explants. Conclusions: ET-1 is upregulated in GCA lesions and, by promoting VSMC migration towards the intimal layer, may contribute to intimal hyperplasia and vascular occlusion in GCA

    Activation of the Integrated Stress Response and ER Stress Protect from Fluorizoline-Induced Apoptosis in HEK293T and U2OS Cell Lines

    Get PDF
    The prohibitin (PHB)-binding compound fluorizoline as well as PHB-downregulation activate the integrated stress response (ISR) in HEK293T and U2OS human cell lines. This activation is denoted by phosphorylation of eIF2 alpha and increases in ATF4, ATF3, and CHOP protein levels. The blockage of the activation of the ISR by overexpression of GRP78, as well as an increase in IRE1 activity, indicate the presence of ER stress after fluorizoline treatment. The inhibition of the ER stress response in HEK293T and U2OS led to increased sensitivity to fluorizoline-induced apoptosis, indicating a pro-survival role of this pathway after fluorizoline treatment in these cell lines. Fluorizoline induced an increase in calcium concentration in the cytosol and the mitochondria. Finally, two different calcium chelators reduced fluorizoline-induced apoptosis in U2OS cells. Thus, we have found that fluorizoline causes increased ER stress and activation of the integrated stress response, which in HEK293T and U2OS cells are protective against fluorizoline-induced apoptosis

    The prohibitin-binding compound fluorizoline induces apoptosis in chronic lymphocytic leukemia cells through the upregulation of NOXA and synergizes with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax

    Get PDF
    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins. In the study herein, the pro-apoptotic effect of fluorizoline was assessed in 34 primary samples from patients with chronic lymphocytic leukemia. Fluorizoline induced apoptosis in chronic lymphocytic leukemia cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespective of patients' clinical or genetic features, whereas normal T lymphocytes were less sensitive. Fluorizoline increased the protein levels of the pro-apoptotic B-cell lymphoma 2 family member NOXA in chronic lymphocytic leukemia cells. Furthermore, fluorizoline synergized with ibrutinib, 5-aminoimidazole-4-carboxamide riboside or venetoclax to induce apoptosis. These results suggest that targeting prohibitins could be a new therapeutic strategy for chronic lymphocytic leukemia

    Targeting prohibitins induces apoptosis in acute myeloid leukemia cells

    Get PDF
    Fluorizoline is a new synthetic molecule that induces apoptosis by selectively targeting prohibitins (PHBs). In this study, the pro-apoptotic effect of fluorizoline was assessed in two cell lines and 21 primary samples from patients with debut of acute myeloid leukemia (AML). Fluorizoline induced apoptosis in AML cells at concentrations in the low micromolar range. All primary samples were sensitive to fluorizoline irrespectively of patients' clinical or genetic features. In addition, fluorizoline inhibited the clonogenic capacity and induced differentiation of AML cells. Fluorizoline increased the mRNA and protein levels of the pro-apoptotic BCL-2 family member NOXA both in cell lines and primary samples analyzed. These results suggest that targeting PHBs could be a new therapeutic strategy for AM

    A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation

    Get PDF
    We previously described diaryl trifluorothiazoline compound 1a (hereafter referred to as fluorizoline) as a first-in-class small molecule that induces p53-independent apoptosis in a wide range of tumor cell lines. Fluorizoline directly binds to prohibitin 1 and 2 (PHBs), two proteins involved in the regulation of several cellular processes, including apoptosis. Here we demonstrate that fluorizoline-induced apoptosis is mediated by PHBs, as cells depleted of these proteins are highly resistant to fluorizoline treatment. In addition, BAX and BAK are necessary for fluorizoline-induced cytotoxic effects, thereby proving that apoptosis occurs through the intrinsic pathway. Expression analysis revealed that fluorizoline induced the upregulation of Noxa and Bim mRNA levels, which was not observed in PHB-depleted MEFs. Finally, Noxa-/-/Bim-/- MEFs and NOXA-downregulated HeLa cells were resistant to fluorizoline-induced apoptosis. All together, these findings show that fluorizoline requires PHBs to execute the mitochondrial apoptotic pathway

    Multicomponent Reactions with Heterocycles: A Source of Novel Scaffolds for Antiparasitic and Antiviral Agents

    Get PDF
    We disclose a reaction discovery approach, based on novel multicomponent reactions (MCRs) upon heterocyclic substrates, especially azines, that yields a variety of scaffolds amenable to straightforward diversification. In just one step, we could jump from one generation of compounds to the next one by mere modification of the reagents. This feature greatly helps in the tuning of the biological properties and has allowed the formation of two classes of anti-infectious agents: antiparasitic and antiviral compounds. First, the silyl-promoted addition of isocyanides to azines yields pyridoimidazolium salts which are potent anti-trypanosoma agents. Next, we discuss the multiple multicomponent reaction approach on diaminodiazines using the Groebke-Blackburn- Bienaymé MCR as a source of new antiviral compounds, also featuring specific DNA affinity. Details on the chemistry and biology related to these processes will be discussed
    corecore