8 research outputs found

    Hierarchical folding of the catalytic core during mitochondrial ribosome biogenesis

    Get PDF
    Final maturation steps during ribosome biogenesis require the assistance of assembly and quality control factors to ensure the folding of rRNA and proteins into a functional translation machinery. Here we integrate several recent structural snapshots of native large ribosomal subunit intermediates into the complex pathway of mitochondrial ribosome assembly

    Dual function of GTPBP6 in biogenesis and recycling of human mitochondrial ribosomes

    Get PDF
    Translation and ribosome biogenesis in mitochondria require auxiliary factors that ensure rapid and accurate synthesis of mitochondrial proteins. Defects in translation are associated with oxidative phosphorylation deficiency and cause severe human diseases, but the exact roles of mitochondrial translation-associated factors are not known. Here we identify the functions of GTPBP6, a homolog of the bacterial ribosome-recycling factor HflX, in human mitochondria. Similarly to HflX, GTPBP6 facilitates the dissociation of ribosomes in vitro and in vivo. In contrast to HflX, GTPBP6 is also required for the assembly of mitochondrial ribosomes. GTPBP6 ablation leads to accumulation of late assembly intermediate(s) of the large ribosomal subunit containing ribosome biogenesis factors MTERF4, NSUN4, MALSU1 and the GTPases GTPBP5, GTPBP7 and GTPBP10. Our data show that GTPBP6 has a dual function acting in ribosome recycling and biogenesis. These findings contribute to our understanding of large ribosomal subunit assembly as well as ribosome recycling pathway in mitochondria

    Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling

    Get PDF
    Ribosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint

    An in vitro system to silence mitochondrial gene expression

    Get PDF
    The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mech- anisms of mitochondrial gene expression remain poorly understood due to a lack of experimental ap- proaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression

    The human Obg protein GTPBP10 is involved in mitoribosomal biogenesis.

    No full text
    The human mitochondrial translation apparatus, which synthesizes the core subunits of the oxidative phosphorylation system, is of central interest as mutations in several genes encoding for mitoribosomal proteins or translation factors cause severe human diseases. Little is known, how this complex machinery assembles from nuclear-encoded protein components and mitochondrial-encoded RNAs, and which ancillary factors are required to form a functional mitoribosome. We have characterized the human Obg protein GTPBP10, which associates specifically with the mitoribosomal large subunit at a late maturation state. Defining its interactome, we have shown that GTPBP10 is in a complex with other mtLSU biogenesis factors including mitochondrial RNA granule components, the 16S rRNA module and late mtLSU assembly factors such as MALSU1, SMCR7L, MTERF4 and NSUN4. GTPBP10 deficiency leads to a drastic reduction in 55S monosome formation resulting in defective mtDNA-expression and in a decrease in cell growth. Our results suggest that GTPBP10 is a ribosome biogenesis factor of the mtLSU required for late stages of maturation

    Sucrose Gradient Sedimentation Analysis of Mitochondrial Ribosomes

    No full text
    Mitochondria contain ribosomes (mitoribosomes) specialized in the synthesis of a handful of proteins essential for oxidative phosphorylation. Therefore, mitoribosome integrity and function are essential for the life of eukaryotic cells and lesions that affect them result in devastating human disorders. To broadly analyze the integrity and assembly state of mitoribosomes it is useful to start by determining the sedimentation profile of these structures by sucrose gradient centrifugation of mitochondrial extracts. During centrifugation, mitoribosome subunits, monosomes and polysomes, and potentially accumulated assembly intermediates will sediment through the gradient at different rates. Sedimentation will depend on the centrifugal force applied and the density and viscosity of the gradient. Importantly, it will also depend on the size, shape, and density of the mitoribosome particles present in the samples under study. Variations of this technique, often coupled with additional downstream approaches, have been used to analyze the process of mitoribosome biogenesis, the composition of assembly intermediates, or to monitor the interaction of extraribosomal proteins with individual mitoribosome subunits or monosomes
    corecore