11 research outputs found

    Modélisation multivariée par variables latentes du procédé de fabrication des anodes précuites utilisées pour la production d'aluminium primaire

    Get PDF
    L'aluminium est fabriqué par un procédé électrolytique. La réaction consomme des anodes de carbone dont la qualité a une grande influence sur l’opération optimale du procédé. Cependant, leurs propriétés sont mesurées hebdomadairement sur moins de 1% de la production. L'objectif de ce projet est d'améliorer le contrôle de la qualité du procédé de fabrication des anodes par la prédiction de leurs propriétés. Une méthode de régression multivariée appelée projection sur structures latentes est utilisée pour relier les propriétés des matières premières et les paramètres d’opération du procédé aux propriétés des anodes cuites recueillies à l'Aluminerie Alcoa de Deschambault. Plusieurs modèles sont étudiés pour les propriétés physiques et la réactivité aux gaz qui expliquent 20% à 68% des variations de celles-ci. Considérant le niveau de bruit élevé des données industrielles, il est jugé qu’une portion significative de la variabilité est modélisée. De plus, l’interprétation de ces modèles est cohérente par rapport aux connaissances du procédé.Aluminum is manufactured by an electrolytic process. The reaction consumes carbon anodes. Anode quality has a great influence on the optimal operation of the reduction process. However, their properties are poorly characterized by weekly averages of anode sample laboratory analyses. The goal of this thesis is to improve quality control at the baked anode manufacturing plant by predicting anode properties. A multivariate latent variable regression method called Projection to Latent Structure (PLS) is used to relate the raw material and the manufacturing process data to the baked anode properties collected at the Alcoa Deschambault smelter. Several models are investigated for physical properties and gas reactivity. From 27% to 68% of the physical properties variance and 20% to 49% of the reactivity variations are captured. The models explained a significant amount of variability, considering that industrial data is typically very noisy. The interpretation of the models was found in agreement with process knowledge

    Monitoring of a carbon anode paste manufacturing process using machine vision and latent variable methods

    Get PDF
    Le procédé de réduction électrolytique Hall-Héroult est utilisé pour la fabrication industrielle d’aluminium primaire. Ce procédé nécessite l’utilisation d'anodes de carbone. L’uniformité de la qualité de celles-ci est un paramètre très important pour assurer la stabilité et des performances optimales des cuves d’électrolyse. Malheureusement, les fabricants d'anodes sont actuellement confrontés à une augmentation de la variabilité des matières premières. Cette situation est due à une diminution de la disponibilité de matières premières de bonne qualité à faibles coûts. Pour compenser, les fabricants d'anodes doivent diversifier leur choix de fournisseurs, ce qui augmente la variabilité. Cependant, les usines ne sont pas préparées pour réagir à cette situation tout en maintenant une qualité d'anode stable. Cette situation est due, entre autres, à un manque de mesures quantitatives en temps réel de la qualité des anodes. Plusieurs exemples d’applications industrielles de vision numérique ont été présentés dans la littérature. Par conséquent, il existe une opportunité de développer un tel système pour obtenir une mesure non destructive et en temps réel de la qualité de la pâte d'anode. Le développement du capteur a été fait avec de la pâte et des anodes pressées à l'échelle laboratoire. Un ensemble de caractéristiques de texture d'images calculées à partir de la transformée en ondelettes discrète (DWT) et de matrices de cooccurrence de niveaux de gris (GLCM) ont été sélectionnées. Ces caractéristiques étaient sensibles aux variations dans la formulation et de la quantité de brai dans la pâte. Le capteur est aussi capable de détecter la quantité optimale de brai (OPD) pour différents cokes. Ensuite, la sensibilité et la robustesse du capteur ont été testées avec de la pâte industrielle. Finalement, les usines collectent déjà beaucoup de mesures de procédé en temps réel. Ces données peuvent être utilisées dans une stratégie de monitorage statistique pour détecter et investiguer des déviations de qualité. Une nouvelle méthode statistique multivariée par variables latentes PLS multi-blocs séquentiels (SMB-PLS) a été développée pour améliorer l'interprétation des données industrielles par rapport aux méthodes usuelles de PLS multi-blocs. Cette méthode a également été utilisée pour discuter de la pertinence d’utiliser les caractéristique d'image de la pâte à un modèle statistique pour la surveillance de la variabilité du procédé.The Hall-Héroult electrolysis reduction process used for the industrial aluminium smelting relies on the consumption of carbon anodes. The quality and consistency of these anodes are very important for the stability and performance of the reduction cells. Unfortunately, the anode manufacturers currently face an increase in the raw material variability. This is due to the declining availability of high quality, low cost and consistent materials on the market forcing the anode manufacturers to diversify their suppliers. However, the anode plants are not prepared to compensate for this increase in variability and still maintain consistent anode quality. There is a lack of real-time quality monitoring and control of the baked anodes properties and the most important raw material and process parameters. Machine vision applications have been successful in many industrial applications. Therefore there is an opportunity to develop such a system to obtain a non destructive and online measurement of the anode paste quality. This sensor could then be used in a feedback/feedforward control strategy for attenuating the unmeasured raw material and process variations. The sensor development was performed using laboratory scale paste and pressed anodes. A set of image texture features computed from discrete wavelet transform (DWT) and gray level co-occurrence matrix (GLCM) methods were selected. These features could capture variations in formulation, pitch ratio in the paste and in pitch demand. The sensor was also found to be sensitive to the optimum pitch demand (OPD) of two different cokes. Then, the sensitivity and robustness of the sensor was tested using industrial paste. Finally, the anode plants already collect some real-time process measurement and off-line raw material and baked anode properties that can be used to monitor and troubleshoot process and quality deviations. A new sequential multi-block PLS (SMB-PLS) method was developed to improve the interpretation of complex industrial dataset compared to already available multi-block PLS methods. This method was also used to discuss the relevance of adding real-time paste image feature to a statistical model for monitoring of the process variability

    Development of a soft sensor for detecting overpitched anodes : detailed investigation of an anode sticking event

    Get PDF
    Adjusting pitch ratio in green anode formulation is becoming difficult due to the increasing raw material variability. The optimal quantity of pitch yielding the best anode properties for a given aggregate, known as the optimal pitch demand (ODP), changes more frequently and is unknown a priori. Exceeding the OPD increases the risk of generating post-baking anode-sticking events. Previously, the potential of a principal component analysis (PCA)-based monitoring scheme for detecting the onset of these undesirable events was assessed by using a set of five green anode resistivity measurements collected from over 120,000 anodes produced over a two-year period. The squared prediction error (SPE) was shown to be sensitive to abnormal events such as anode sticking. The objective of this paper is to further validate the soft sensor by studying the SPE dynamic behavior during a post-baking sticking event when changes in the anode paste formulation were introduced as part of normal operation. Descriptive and statistical analyses demonstrate that the SPE metric reacts significantly to changes in the recipe. The provided example illustrates how the SPE metric used together with pitch ratio data could help advised the operators of manufacturing conditions posing a higher risk of generating post-baking sticking problems

    Interpolation of Pathway Based Non-Destructive Testing (NDT) Data for Defect Detection and Localization in Pre-Baked Carbon Anodes

    No full text
    Producing consistent quality pre-baked carbon anodes for the Hall–Héroult aluminum reduction process is challenging due to the decreasing quality and increasing variability of anode raw materials. Non-destructive testing techniques (NDT) have been developed and recently implemented in manufacturing plants to establish better suited and more efficient quality control schemes than core sampling and characterization. These technologies collect measurements representing effective properties of the materials located along a pathway between two transducers (emitter and receiver), and not spatially-resolved distribution of properties within the anode volume. A method to interpolate pathway-based measurements and provide spatially-resolved distribution of properties is proposed in this work to help NDT technologies achieve their full potential. The interpolation method is tested by simulating acousto-ultrasonic data collected from a large number of 2D and 3D toy examples representing simplified anode internal structures involving randomly generated defects. Experimental validation was performed by characterizing core samples extracted from a set of industrial anodes and correlating their properties with interpolated speed of sound by the algorithm. The method is shown to be successful in determining the defect positions, and the interpolated results are shown to correlate significantly with mechanical properties

    Interpolation of Pathway Based Non-Destructive Testing (NDT) Data for Defect Detection and Localization in Pre-Baked Carbon Anodes

    No full text
    Producing consistent quality pre-baked carbon anodes for the Hall–Héroult aluminum reduction process is challenging due to the decreasing quality and increasing variability of anode raw materials. Non-destructive testing techniques (NDT) have been developed and recently implemented in manufacturing plants to establish better suited and more efficient quality control schemes than core sampling and characterization. These technologies collect measurements representing effective properties of the materials located along a pathway between two transducers (emitter and receiver), and not spatially-resolved distribution of properties within the anode volume. A method to interpolate pathway-based measurements and provide spatially-resolved distribution of properties is proposed in this work to help NDT technologies achieve their full potential. The interpolation method is tested by simulating acousto-ultrasonic data collected from a large number of 2D and 3D toy examples representing simplified anode internal structures involving randomly generated defects. Experimental validation was performed by characterizing core samples extracted from a set of industrial anodes and correlating their properties with interpolated speed of sound by the algorithm. The method is shown to be successful in determining the defect positions, and the interpolated results are shown to correlate significantly with mechanical properties

    Physical Property Evolution of the Anode Mixture during the Baking Process

    No full text
    The Hall-Héroult process uses prebaked carbon anodes as electrodes. The anode’s quality plays a crucial role in the efficiency of the aluminium production process. During the baking process, the anode undergoes complex physicochemical transformations. Thus, the production of high-quality anodes depends, among others, on the efficient control of their baking process. This paper aims to investigate the evolution of some physical properties of the anode paste mixture during the baking process. These properties include the mass loss fraction, real and apparent densities, the ratio of apparent volume, the permeability, and porosities. For this purpose, experiments consisting of thermogravimetric analysis, dilatometry, air permeability, and helium-pycnometric measurements were carried out. The anode permeability at high temperatures was linked to the air permeability through a permeability correlator due to experimental limitations. Moreover, the real density at high temperatures was estimated by combining real densities of the coal tar pitch and coke aggregates. Different porosities, such as the open porosity and the closed porosity related to the pitch binder, were estimated by taking the permeability at high temperatures into account. In this context, the effect of the permeability correlator, which was introduced to link the permeability at high temperatures to the air permeability, was investigated through a sensitivity analysis. These results allow an estimation of the shrinking index, a new variable introduced to reflect the baking level of the anode mixture, which is linked to the volatile that is released in both open and closed pores. Afterwards, the pore pressure inside closed pores in the coal tar pitch was estimated. The obtained results highlight some new insights related to the baking process of the anode mixture. Moreover, they pave the way for better modeling of the thermo-chemo-mechanical behavior of anodes at high temperatures

    Modeling of Thermo-Chemo-Mechanical Properties of Anode Mixture during the Baking Process

    No full text
    In the Hall–Héroult process, prebaked carbon anodes are utilized to produce primary aluminium. The quality of the anode plays a crucial role in the efficiency of electrowinning primary aluminium. In the production of anodes, the anode baking is considered as the stage most frequently causing anode problems. During the baking process, the anode undergoes complex physicochemical transformations. Moreover, the anode at a lower position, imposed by loading pressures from upper anodes, will creep during this process. Thus, the production of high-quality anodes demands efficient control of their baking process. This paper aims to investigate the thermo-chemo-mechanical properties of the anode paste mixture at high temperatures. These properties include kinetic parameters of pitch pyrolysis such as the activation energy and the pre-exponential factor, the thermal expansion coefficient (TEC) and relevant mechanical parameters related to the elastic, the viscoelastic and the viscoplastic behaviours of the anode. For this purpose, experiments consisting of the thermogravimetric analysis, the dilatometry and the creep test were carried out. Based on the obtained results, the forementioned parameters were identified. Relevant mechanical parameters were expressed as a function of a new variable, called the shrinking index, which is related to the volatile released in open and closed pores of the anode. This variable would be used to highlight the chemo-mechanical coupling effect of the anode mixture. New insights into the phenomena such as the expansion due to the increase of the pore pressure and the chemical shrinkage of the anode during the baking process were also gained in this work. These investigations pave the way for modeling the thermo-chemo-poromechanical behaviour of the anode during the baking process

    Strain Rate and Stress Amplitude Effects on the Mechanical Behavior of Carbon Paste Used in the Hall–Héroult Process and Subjected to Cyclic Loadings

    No full text
    Carbon products such as anodes and ramming paste must have well-defined physical, mechanical, chemical, and electrical properties to perform their functions effectively in the aluminum electrolysis cell. The physical and mechanical properties of these products are assigned during the shaping procedure in which compaction stresses are applied to the green carbon paste. The optimization of the shaping process is crucial to improving the properties of the carbon products and consequently to increasing the energy efficiency and decreasing the greenhouse gas emissions of the Hall–Héroult process. The objective of this study is to experimentally investigate the effect(s) of the strain rate, of the stress maximum amplitude, and of the unloading level on the behavior of a green carbon paste subjected to cyclic loading. To this end, experiments consisting of (1) cyclic compaction tests at different maximum stress amplitudes and strain rates, and (2) cyclic compaction tests with different unloading levels were carried out. The study obtained the following findings about the behavior of carbon paste subjected to cyclic loads. The strain rate in the studied range had no effect either on the evolution of the permanent strain as a function of the cycle number, nor on the shape of the stress–strain hysteresis during the cyclic loading. Moreover, samples of the same density that had been subjected to different maximum stress amplitudes in their loading history did not have the same shape of the stress–strain curve. On the other hand, despite having different densities, samples subjected to the same number of cycles produce the same stress–strain curve during loading even though they were subjected to different maximum stress amplitudes in their loading histories. Finally, the level of unloading during each cycle of a cyclic test proved significant; when the sample was unloaded to a lower level of stress during each cycle, the permanent strain as a function of the cycle number was higher

    Crack Detection Method Applied to 3D Computed Tomography Images of Baked Carbon Anodes

    No full text
    Carbon anodes used in the aluminium industry were imaged through destructive and non-destructive testing (NDT) methods. For the latter case, computed tomography (CT), which has previously been used to map the 3D apparent density distribution, was extended to crack detection. Previous work has shown how to overcome technical hurdles related to crack detection by using percolation-based algorithms operating on low-resolution images of full-scale baked carbon anodes. The previous application to 2D images was extended here to the 3D case. The crack detection algorithm has been performed on anode slices containing several independent macro cracks with different morphologies
    corecore