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Résumé 
L'aluminium est fabriqué par un procédé électrolytique. La réaction consomme des anodes 

de carbone dont la qualité a une grande influence sur l’opération optimale du procédé. 

Cependant, leurs propriétés sont mesurées hebdomadairement sur moins de 1% de la 

production. L'objectif de ce projet est d'améliorer le contrôle de la qualité du procédé de 

fabrication des anodes par la prédiction de leurs propriétés. Une méthode de régression 

multivariée appelée projection sur structures latentes est utilisée pour relier les propriétés 

des matières premières et les paramètres d’opération du procédé aux propriétés des anodes 

cuites recueillies à l'Aluminerie Alcoa de Deschambault. Plusieurs modèles sont étudiés 

pour les propriétés physiques et la réactivité aux gaz qui expliquent 20% à 68% des 

variations de celles-ci. Considérant le niveau de bruit élevé des données industrielles, il est 

jugé qu’une portion significative de la variabilité est modélisée. De plus, l’interprétation de 

ces modèles est cohérente par rapport aux connaissances du procédé. 
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Abstract 
Aluminum is manufactured by an electrolytic process. The reaction consumes carbon 

anodes. Anode quality has a great influence on the optimal operation of the reduction 

process. However, their properties are poorly characterized by weekly averages of anode 

sample laboratory analyses. The goal of this thesis is to improve quality control at the 

baked anode manufacturing plant by predicting anode properties. A multivariate latent 

variable regression method called Projection to Latent Structure (PLS) is used to relate the 

raw material and the manufacturing process data to the baked anode properties collected at 

the Alcoa Deschambault smelter. Several models are investigated for physical properties 

and gas reactivity. From 27% to 68% of the physical properties variance and 20% to 49% 

of the reactivity variations are captured. The models explained a significant amount of 

variability, considering that industrial data is typically very noisy. The interpretation of the 

models was found in agreement with process knowledge. 
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Chapter 1 Introduction 

Aluminum is the third most abundant element on earth after oxygen and silicon and the 

most abundant metallic element. It constitutes approximately eight percent of the Earth’s 

crust (Encyclopedia Britannica (a)). Due to its high chemical reactivity, the metallic state of 

aluminum does not occur in nature. It can be found combined to different minerals. The 

most common aluminum ore is bauxite, a mixture of aluminum hydroxide, aluminum oxide 

and other impurities. Aluminum is a young metal; industrial production began when 

Charles Martin Hall (1863-1914) and Louis-Paul Toussaint Héroult (1863-1914) almost 

simultaneously discovered that it was possible to produce aluminum through an electrolytic 

process in 1886 (Encyclopedia Britannica (b)). It is now known as the Hall-Héroult process 

in which an electric current dissociates alumina (Al2O3) into aluminum and oxygen. 

Alumina powder is dissolved into a molten mixture of cryolite (Na3AlF6) and aluminum 

fluoride (AlF3) salts, commonly called the bath. Aluminum oxide is obtained from bauxite 

by the Bayer process (Grjotheim and Kvande 1993) and is the main raw material for 

modern aluminum smelter together with carbon and electricity. Alumina is fed almost 

continuously in the bath by dedicated point feeders and liquid aluminum is tapped on a 

regular basis to maintain a constant metal height in the cells. The Hall-Héroult process uses 

baked carbon anodes, the source of carbon for the electrolytic reaction. The oxygen 

produced by electrolysis reacts with the carbon to produce carbon dioxide. The global 

electrochemical reaction is: 

 ( ) ( ) ( ) ( )2 3 diss s l 2 g2Al O  + 3C  = 4Al  + 3CO  (1) 

The reaction occurs in reduction cells, also called pots. The Figure 1 presents a sketch of a 

modern pre-baked cell. They are made of a steel shell lined by insulating materials. Liquid 

aluminum is produced in the bath layer and settles at the bottom of the cells with the molten 

bath floating on top of it. Carbon anodes are immersed a certain depth into the bath and are 

covered by a layer of cover material (i.e. mixture of alumina and crushed bath) which forms 

a hard protective crust. The active cathode is the bath-metal interface. There are two types 
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of aluminum reduction technologies currently in use around the world: the Söderberg and 

the prebaked cells. They differ by the type of anodes used during the operation of the pots. 

The Söderberg anodes are formed continuously and self baked in the cells. This technology 

is being slowly replaced by the prebaked technology due to its higher environmental impact 

and lower productivity. The prebaked technology uses prefabricated anodes that are formed 

and baked in a dedicated manufacturing plant. As they are continuously consumed, anodes 

are lowered in the pots to keep the anode cathode distance (ACD) constant and they are 

replaced periodically when about 2/3 of the original anode is consumed. The residual 

anodes called butts are reused in the anode manufacturing process. 

 

Figure 1 – Cross section of a prebaked reduction cell technology (Courtesy of Alcoa) 

Prebaked anodes are made of calcined petroleum coke aggregates, coal tar pitch and 

recycled anode butts (i.e. crushed residual anodes after consumption in the cells). The 

materials are mixed together and moulded into blocks called green anodes. These blocks 

are then baked in a furnace up to a temperature of 1050-1150°C. The baked anode is later 

assembled to an anode rod (the rod is made of aluminum or copper, the tripod and stubs are 

made of steel). An anode assembly is presented in Figure 2. 
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Figure 2 – Anode assembly (Courtesy of Alcoa) 

As prebaked anodes are used in the pots, they are consumed by the electrolytic reaction 

(equation (1)). Spent anodes (i.e. butts) are removed from the pots and reused in the green 

anode mixture together with fresh coke and pitch. 

Baked anode properties are evaluated using core samples analyzed in the laboratory. The 

number of samples taken during production is typically less than 1% of the weekly anode 

production. This is not enough to provide a representative measure of the variability of the 

anode population. Sinclair and Sadler (2009) discuss the issues of different sampling 

strategies. Furthermore, laboratory results used to monitor process performance are 

available 4 to 6 weeks after the anodes have been produced, that is, well after the anodes 

have been set in the pots due to sampling and analysis delay. When a deterioration of anode 

properties is detected, it is often too late for applying remedial control actions to avoid 

affecting the performance of reduction cells. 

The goal of this thesis is to improve quality control at the baked anode manufacturing plant 

by predicting anode properties immediately after baking, thus saving the 4-6 weeks delay to 

obtain anode quality information. This is achieved through developing a soft-sensor based 

on all the data available at the anode manufacturing plant. A multivariate latent variable 

modeling approach, Projection to Latent Structure (PLS) in this case, is used to relate the 

Aluminum rod
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and stub



 4 
 

raw material and the manufacturing process data to the baked anode properties collected at 

the Alcoa Deschambault smelter. This latent variable model allows for predicting anode 

properties (i.e. quality attributes) and can also be used for process monitoring. 

This thesis is organized as follows. Chapter 2 and Chapter 3 provide background 

information on the anode raw materials and the manufacturing process, and on the 

multivariate latent variables methods, respectively. Chapter 4 discusses the data collected at 

the Alcoa Deschambault smelter and how it was pre-processed. Chapter 5 focuses on 

building, interpreting and demonstrating the predictive ability of the PLS models. Finally, 

some conclusions are drawn and future work is discussed. 

 



 

Chapter 2 Carbon materials and manufacturing 
process 

2.1 Anode manufacturing process 

This chapter describes the manufacturing process of prebaked anodes, the traditional 

quality control strategy based on core sampling and the routine laboratory analyses 

performed for assessing anode quality. It also discusses in details the effect of carbon 

materials properties and process parameters on anode properties and their performance in 

the smelting process. Figure 3 presents the typical steps for the production of anodes 

(Fischer et al. 1995). The flowsheet is described in details in the following sections. 

 

Figure 3 – Anode manufacturing process flowsheet (Fischer et al. 1995) 

The anode raw materials consist of calcined petroleum coke, coal tar pitch and recycled 

anode butts. They are stored in silos at the plant. In the past solid pitch was used, but now 

most facilities store their pitch in liquid state for health and environmental issues. The coke 

and butts (after cleaning and crushing) are classified and grinded to the desired particle size 
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distribution. This is the dry aggregate preparation step. The dry aggregate is composed of 

the coke particles of different sizes (e.g. coarse, intermediate and fine) and butt particles 

which also contain the baked scrap anodes. The typical particle size for each fraction is 

given in Table 1 (Jones 1986). 

Table 1 – Typical dry aggregate particle size (Jones 1986) 

 

The dry aggregate is then pre-heated. The green scrap anodes are added during this step. It 

is followed by the mixing of the dry aggregate with the liquid pitch. The green anodes are 

formed either using a press or a vibro-compactor. The baking of the green anodes is 

performed in an anode baking furnace up to a temperature of 1050-1200°C (Fischer et al. 

1993) for about two weeks. Anodes are made of approximately 65 % of coke, 20% of butts 

and 15% of pitch in weight (Fischer and Perruchoud 1985). Figure 4 shows the various 

processing steps and how each of them affects baked anode quality (Fischer et al. 1995). 

The rest of this chapter explains in details some of these relationships. 

 

Figure 4 – Relationships between raw materials, process conditions and anode quality 
(Fischer et al. 1995) 

Particle size
Coarse -¼ in/+28 mesh

Intermediate -28/+100 mesh
Fine -100 mesh

max 1 in

Coke

Butts & baked scrap

Dry aggregate
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Anode quality is defined by a number of laboratory measurements obtained from core 

sample taken from baked anodes. These quality attributes (listed in Table 2) are grouped 

into four categories: physical properties, mechanical properties, reactivity and chemical 

composition (e.g. contaminants). Details on the laboratory analysis are available in Fischer 

et al. (1995). For the reactivity analysis, the three following properties are measured: the 

percentage lost is the material consumed, the dust is the material that is detached from the 

sample and the non reacted part is called the residue. 

Table 2 – Anode properties typically measured from core samples 

 

Unit
Air permeability nPm
Apparent density kg/dm3

Thermal conductivity W/mK
Electrical resistivity µohm*cm
Flexural strengh MPa
Fracture energy J/m2

Coefficient of thermal expansion K-1

Compressive strength MPa
Young's modulus GPa
Real density kg/dm3

Cristalite size Lc nm
Ash content %
CO2 reactivity CO2 loss CRL %

CO2 dust CRD %
CO2 residue CRR %

Air reactivity Air loss ARL %
Air dust ARD %
Air residue ARR %

Chemical impurities Sulphur S %
Vanadium V ppm
Nickel Ni ppm
Silicon Si ppm
Iron Fe ppm
Aluminium Al ppm
Sodium Na ppm
Calcium Ca ppm

Properties
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Anode consumption is often used in the literature to measure the performance of baked 

anode in the reduction cells. Since it is difficult to relate anode behaviour to individual 

properties, net carbon consumption is used. The theoretical carbon consumption of the 

Hall-Héroult process is 0.333 kg C/ kg Al but the operational consumption varies between 

0.4 - 0.5 kg C/ kg Al (Grjotheim and Kvande 1993). The excess consumption is related to 

carbon attack by air and by CO2 (Boudouard reaction) and also by mechanical failure due 

to thermal shock and anode cracking (Jones 1986). There are two different modes for gas 

reactivity. The first is the direct reaction with air or CO2. The second is the preferential 

oxidation of the binder matrix which causes some anodes particles to disintegrate and fall 

in the pots. This phenomenon is called dusting and leads to operational problems in the 

potroom and to higher carbon overconsumption since this carbon material is not used for 

metal production. 

Some fundamental relationships can be established between the various anode quality 

variables. Hence, anode properties are typically correlated with one another to some extent. 

An overview of known relationships is provided below (Fischer et al. 1995). 

• A high baked apparent density can be linked to a longer anode life in the pots, 

• Apparent density and air permeability are closely related. When density increases, 

permeability usually decreases, 

• A decrease in air permeability also leads to a lower air and CO2 reactivity rates, 

• The apparent density can also be linked to coke bulk density, anode recipe and 

mixing condition, 

• Electrical resistivity and thermal conductivity are closely related and both are 

strongly influenced by coke quality and by the final baking temperature, 

• Flexural strength (FS), fracture energy (FE), compressive strength (CS), Young’s 

modulus and coefficient of thermal expansion (CTE) are all important mechanical 

properties for anode resistance to thermal shock and anode cracking. Coke structure 

influences the coefficient of thermal expansion. The higher the CTE, the higher the 
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other mechanical properties need to be to avoid anode failure in the pots. 

Mechanical properties are influenced by the coke properties and the manufacturing 

process. There is a positive relationship between FS, FE, CS and Young’s modulus 

(Perruchoud et al. 2004). The spatial distribution of the properties throughout the 

anode is also an important aspect of anode quality (i.e. homogeneity). 

There are numerous elements that influence anode quality: coke quality, pitch quality butts 

quality, dry aggregate blend, dust fineness control and addition, quality of mixing and low 

heat-up rate, final baking temperature and soaking time in the baking furnace. The rest of 

this chapter presents the most common knowledge on the effects of raw material properties 

and process parameters on anode quality. 

2.2 Petroleum calcined coke 

Calcined coke is manufactured from the residual heavy oil fractions of the petroleum 

refining industry. It is a low value by-product (i.e. waste) and therefore, refineries have no 

incentive to control and/or improve its quality. The following steps are required to 

transform heavy oil into coke: a delayed coking process yields the green coke and this 

process is followed by a calcining operation to produce the calcined coke of interest for the 

aluminum industry. Calcined coke quality is influenced by the calcining conditions and 

green coke quality which is influenced by crude oil quality, refining operation and delayed 

coking operation parameters (Fischer et al. 1995). Several papers describe the effects of oil 

quality, and process operation on green coke quality (e.g. (Fischer and Perruchoud 1985) 

and (Vitchus et al. 2001)). 

The quantity and quality of calcined cokes available on the market varies quite a lot. This 

implies that carbon plants need to adapt to cokes having important differences in physical 

properties and chemical impurities from shipment to shipment (McClung and Ross 2000). 

These quality variations contribute to variations in anode quality. The critical chemical 

impurities are vanadium (V), sulfur (S) and sodium (Na). They affect air and CO2 reactivity 

by acting as catalyst for the oxidation reactions (Fischer et al. 1995), (Grjotheim and 

Kvande 1993) and (Houston and Oye 1985). Air and CO2 reactivity are two important 
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mechanisms for carbon overconsumption. The coke structure, porosity and density also 

have important effects on anode quality (Jones 1986). 

Several articles investigate the effect of impurities on anode quality. They mainly affect the 

anode reactivity and aluminum purity but have little impact on the mechanical behaviour, 

thermal conductivity and resistivity of the baked anode. A review of the different literature 

associated to coke impurities is presented in Belitskus and Danka (1988). The overall effect 

of metallic impurities is a catalytic effect on the air and CO2 reactivity of the anode. This 

increases the carbon consumption since the reacted carbon is not used to produce 

aluminum. Vanadium (V), Nickel (Ni) and Calcium (Ca) increase air reactivity and carbon 

consumption while CO2 reactivity is mainly affected by sodium (Na) contamination 

(Perruchoud and Fischer 1991). Other impurities like iron (Fe) and silicon (Si) can lower 

the metal quality. They do not affect the cell operation but they reduce the economical 

value of the aluminum produced (i.e. metal grade). 

The effect of sulfur is not as clearly understood. Indeed, the literature is divided into two 

groups. On one hand, some research groups conclude that sulfur increases reactivity. The 

article by Jones et al. (1979) demonstrates that an increase in sulfur content causes an 

increase in air reactivity, but a decrease in CO2 reactivity. According to Jones (1986) and 

Barrilon and Pinoir (1977), sulfur increases the carbon consumption, which causes 

environmental concerns due to SO2 emissions. On the other hand, some authors claim that 

increasing sulfur decreases the sensitivity of the anode to the attack by CO2 and air (i.e. 

oxygen). An increase in sulfur decreases the sodium catalytic effect on anode reactivity by 

binding in an inactive form during baking, (Hume et al. 1993a). The effect of sulfur was 

also found by Hume et al. (1993b) to be an inhibitor of oxidation reaction. It is important to 

remember that the amount of each coke impurity is not independent and that usually, when 

the sulfur increases, all the other impurities increase in similar proportions (Houston and 

Oye 1985). Sulfur is considered as an inhibitor of the catalytic effect of the other 

impurities, especially for CO2 reactivity (Gendron et al. 2008). There is also a slight 

desulfurization that can occur during baking for high sulfur coke. This can further increase 

the problem since the loss of sulfur increases the anode reactivity (Edwards, et al. 2007). 
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Coke structure is another important property that greatly influences anode properties. The 

typical good anode grade coke is called the sponge coke. This coke is a mixture of isotropic 

and anisotropic grains. Isotropic coke is denser, less porous, but less pure and more 

sensitive to thermal expansion. Anisotropic coke have less impurities and is less sensitive 

to thermal expansion but is more porous and have more accessible surface for oxidation 

reactions (Jones 1986). High isotropic coke also reduces the binding ability of pitch due to 

the low macroporosity (Edwards et al. 2009); pitch penetration within the coke pores is 

more difficult. The coke structure also influences the anode mechanical properties, thermal 

conductivity and resistivity. Since approximately 65% of the anode is composed of coke, its 

properties will have a strong influence on the anode quality. Obviously, the mixing and 

baking process have an impact on the final properties, but initial coke quality is important. 

For coke blends, it is important to achieve a correct balance between particle shapes, 

density, strength and porosity. Blending cokes with very different properties can lead to 

poor anode quality and higher carbon consumption (Jones 1986). This also applies to coke 

and pitch blends. The cokefied pitch should have a similar structure as the petroleum coke 

(Jones 1986). The parameters affecting pitch coke structure will be discussed section 2.3. 

The coke used for anode production should have: 

• Low closed porosity and high density for long life in pots and low reactivity, 

• Low electrical resistivity for low energy consumption, 

• Low impurities to minimize metal contamination and air and CO2 oxidation 

sensibility, 

• Low coefficient of thermal expansion to minimize thermal shock problems. 

2.3 Coal tar pitch 

Coal tar pitch (CTP) is the binder used for making the baked anodes for the aluminum 

industry. This pitch is produced from coal tar through a distillation process. Coal tar is a 

by-product of the metallurgical coke production from coal. The majority of the coal tar 
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pitch produced around the world is obtained by a vacuum flash distillation procedure. The 

other manufacturing process is by heat treatment of coal tar to obtain a desired softening 

point. This second process leads to a lower quality pitch for anode manufacturing 

(Wombles and Baron 2006) since it creates a mesophase (i.e. secondary quinoline insoluble 

molecules) which reduces the pitch binding ability. Coal tar pitch quality is defined in the 

industry by the properties listed in Table 3. The range of pitch properties available in 2001 

is also shown in Table 3, adapted from Perruchoud et al. (2003). 

Table 3 – Typical properties for pitch in 2001, adapted from Perruchoud et al. (2003) 

 

There are three major constituents in CTP, from the smallest molecules to the largest: the 

toluene soluble (TS), the β resin and the quinoline insoluble (QI) fractions. Figure 5 

presents the three fractions of the CTP and how each constituent is measured. 

 

Figure 5 – Constituents of the coal tar pitch 

Properties Unit Typical Range
Softening point °C 110 - 115
Insoluble in quinoline (QI) % 6 - 16
Insoluble in toluene (TI) % 26 - 34
Viscosity at 160 °C mPas 1200 - 2000
Density in water kg/dm3 1.31 - 1.33
Coking value % 56 - 60
Distillation 0 - 270 °C % 0.1 - 0.5
Distillation 0 - 360 °C % 3 - 6
Ash content % 0.1 - 0.3
S % 0.4 - 0.6
Na ppm 50 - 250
CI ppm 50 - 150
Ca ppm 20 - 100
Si ppm 50 - 200
Fe ppm 50 - 300
Zn ppm 100 - 500
Pb ppm 100 - 300
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The TS and β resin are measured from the toluene insoluble (TI) test. Toluene is a 

moderate solvent for pitch. The TS is the soluble fraction of the pitch in toluene. The β 

resin and QI fractions are contained in the toluene insolubles. Quinoline is a stronger 

solvent. The quinoline insoluble test is used to determine the quantity of solids and high 

molecular weight molecules in the pitch. The difference between TI and QI corresponds to 

the β resin. 

 

Figure 6 – Coal tar pitch QI types, adapted from Baron, et al. (2009) 

The QI fraction can contain three types of molecules as seen in Figure 6, adapted from 

(Baron, et al. 2009). It is mainly composed of primary QI. These molecules are formed by 

the cracking of coal volatiles in the tunnel head of by-product coke oven. An increase in QI 

value decreases the wetting behaviour of the pitch. On the other hand higher QI content 

increases carbon product density, strength and coking value (i.e. amount of pitch coke 

produced during anode baking). The QI contribute to the binding effect of the pitch. Some 

suppliers apply a post-distillation heat treatment to the pitch. This leads to the formation of 

a mesophase, called secondary QI, which is undesirable for producing high quality anodes. 

The mesophase interferes with the binder mixing and inhibits carbon impregnation by the 

Coal tar pitch QI types

Coke oven derived

Primary QI
~1µm

Cracking of coal volatiles
C/H  3,5 – 5,5

Carry-Over
5 – 500 µm

Ash, coal particles and coke 
cenospheres

Thermal treatment induced

Secondary QI or Mesophase
4+ µm
C/H ~2
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pitch. Lower QI pitch with no mesophase wet coke surfaces more rapidly, thus they need 

less mixing time. 

The β resin fraction contributes mainly to the wetting action between the coke filler and the 

pitch. It contains aromatics of high molecular weight molecules and as a high carbon yield, 

like the QI fraction, (McHenry 1992), (Golubic et al. 2010) and (Sorlie 2010). 

The pitch binder becomes a graphite crystallite during baking. The pitch coke structure 

varies from a more disoriented and crosslinked to a more isotropic coke as the pitch QI 

increases. A moderate isotropic binder coke forms good physical and chemical bonds 

between the filler petroleum coke. 

The toluene soluble (TS) fraction corresponds to the volatile content of coal tar pitch and 

acts as a softener. Thus it as a strong influence on the softening point of the pitch (SP). The 

higher the SP the fewer volatiles are contained in the binder pitch (Jones 1986). Most of the 

volatiles are lost by degassing during baking. 

The properties of a good anode binder pitch are now discussed. First, it should have a good 

wetting (from the β resin) and binding (from the QI fraction) capacity during paste mixing. 

Secondly, the weight loss due to the degassing of volatiles during baking must be 

minimized. Also, the binder must provide the anodes with good mechanical properties (e.g. 

minimize thermal shock cracking), and high resistance to air and CO2 oxidation. 

Vacuum distilled pitch has less volatile than heat treated pitch for the same softening point. 

Also as the SP increases, the QI, β resin and coking value (C.V.) (e.g. the coke yield of the 

pitch) increase but the volatiles decrease. This situation can be advantageous during baking. 

With less volatile, there is less bake weight loss and also some potential for higher heat-up 

rate and increased baking furnace productivity (Turner 1993). 

It is important to understand the correlation between the various pitch properties. Changing 

one property will affect the others. It is not possible to modify them one at a time and 

maximizing only one could lead to really bad pitch quality. This is illustrated in Figure 7 

(Sorlie 2010) where the different relationships between the pitch properties are shown. 
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Figure 7 – Relationships between pitch properties (Sorlie 2010) 

2.4 Recycle anode butts 

Anode butts are the remaining part of the anode not consumed in the potroom. To avoid 

metal contamination from the steel stubs, the spent anodes are removed from the pots when 

approximately one-third is left unreacted. These butts are contaminated, thus a cleaning 

step follows the separation of the anode from the stub to remove anode cover material and 

frozen bath from the butt surfaces. After cleaning, the butts are crushed, screened to the 

desired size distribution and stored in silos for use in the production of fresh anodes. This 

reduces the amount of waste material. Butts constitute approximately 15-30% of the green 

anode formulation (Fischer and Perruchoud 1991). 

The cleanliness of the butts is of great importance. It influences the anode mechanical 

strength, air permeability and CO2 reactivity. Good quality butts are characterized by their 

hardness and low sodium (Na) content (Hulse 2000). They have properties similar to the 

baked anode. Hard butts increase anode apparent density, decrease air permeability and 

increase flexural strength. Finally, the presence of sodium in the form of bath particles 

increases the CO2 reactivity (Fischer and Perruchoud 1991). 

The sodium in the butts comes mainly from the contamination of the material by residual 

bath particles and by impregnation in the anode. The bath is composed of cryolite 

(Na3AlF6) and fluoride salts containing Na and Ca. The particles are therefore highly 



 16 
 

concentrated in sodium which acts as a catalyst for the air and CO2 oxidation reactions 

(Engvoll et al. 2001). Well cleaned butts contain a minimum amount of sodium. This is 

important to minimize its impact on anode quality. Sometime, during normal cell operation 

(e.g. controlling anode effect), the anodes are dipped in the metal. During that time, the 

impurities and the bath including sodium will soak up in the anode at a fast rate. Anode 

dipping can also occur when pots become unstable due to higher than normal metal 

movement and also sometimes due to operational errors when the operators are changing 

the anodes. It should be minimized as much as possible because even well cleaned dipped 

anode contains a high amount of Na. 

2.5 Anode formulation (aggregate sizing) 

The coke and butts particles included in the anode are called the dry aggregate. They are 

the filler of the anode, thus influencing its quality through porosity, packing and sizing 

(Hulse 2000). Coke and butts particles are prepared through screening and crushing. The 

coke is classified in three different fractions: coarse, medium and fines. The fines are 

produced in a ball mill. The dust collected throughout the paste plant is also directed in the 

fine fraction. The butts consist mainly of coarse material (Fischer et al. 1995). In the dry 

aggregate formulation, it is desired to use butt particles for the coarser size fraction and 

coke particles for the medium and fine fractions. Butts usually have a lower porosity than 

coke and keeping the particles bigger decreases the risk of sodium contamination in the 

filler matrix by high sodium butt fines. Also, coarser butts have a lower surface area 

compared to fine butts, thus limiting the effect of Na on reactivity. It is also important to 

maintain the size distribution of each fraction as constant as possible. The proportion and 

fineness of the dust needs to be in good control since it as a strong impact on pitch demand 

(Mannweiler and Keller 1994). The dust fineness is characterized using the Blaine number, 

which is a measure of the particle surface area. It is used for particles too small to be 

classified by sieve analysis. The most commonly used method is to measure the Blaine 

through the pressure-drop of a packed-bed of the sample. The drawback is that it measures 

only an average value of the size distribution. It can also be measured by laser diffraction 

which gives the distribution of the particle size in the dust. Green apparent density 

increases with the dust content but it increases the pitch demand. When coke is grinded to a 
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smaller particle size, its porosity decreases and its apparent density increases. There is an 

optimum balance between fines and pitch content as a high pitch ratio or high fines ratio 

anode can be difficult to process (Hulse 2000). 

2.6 Paste pre-heating, mixing and forming 

The dry aggregate blend is formulated using weight belts and is discharged in a pre-heating 

equipment. Green scrap is also added to the dry aggregate at this step. Maintaining an 

appropriate pre-heating temperature (ranging between 150 and 200°C (Hulse 2000)) is 

important when adding pitch to the dry aggregate blend. Pitch at a temperature ranging 

between 170 and 230°C (Hulse 2000) is incorporated in the dry aggregate mix when it 

enters the paste mixer. The goal of mixing is to combine the aggregate and the binder and 

evenly distribute the later component in the paste. A large temperature difference between 

the pitch and the dry aggregate when these are put in contact in the paste mixer can cause 

partial solidification of the pitch on the coke particles. This can prevent proper pitch 

penetration in the filler matrix. Mixing temperature is usually 50°C to 60°C (155°C to 

180°C) above the pitch softening point. Anode quality generally increases with increased 

coke and pitch temperature up to the degassing temperature of pitch volatiles. The paste 

viscosity decreases with an increase in the temperature and this will improve the mixing, 

spreading and penetration of the binder matrix in the paste (Hulse 2000). 

The pitch ratio in the paste is also of great importance. Under-pitched anodes will have 

insufficient mechanical properties leading to anode failure in the pots and high electrical 

resistivity due to a poor binding behaviour. Over-pitched anodes lead to slump formation 

(i.e. problems when forming the anodes), high weight loss, shrinkage and cracks formation 

during baking due to greater volatiles degassing, to packing material sticking also while 

baking and finally stub hole deformations (Hulse 2000, Mannweiler and Keller 1994). Pitch 

demand is a function of the fines and filler particle properties but also mixing temperature 

and duration. There is an optimum between mixing duration and temperature, dry aggregate 

pre-heating temperature and pitch ratio. 

Anode forming is performed either by pressing or vibro-compaction. Pressed anodes are 

insensitive to paste viscosity as opposed to vibrated anode. The quality of pressed anodes 
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depends largely on raw material properties and recipe. Vibrated anode quality depends also 

on raw material quality but is more sensitive to anode forming process parameters (e.g. 

paste temperature during vibro-compaction) (Hulse 2000). If the temperature is too high, 

the paste viscosity will be too low and the anode could collapse when taken out of the mold 

and a low temperature causing high viscosity will lead to improper compaction. 

2.7 Anode baking 

Anode baking is done in an open ring baking furnace. Details of operation are explained in 

(Fischer et al. 1995). A section of the furnace is made of several pits (generally 6 or 7) 

where the anodes are staked vertically (e.g. 6 anodes large by 3 anodes high). The space 

between each pit (i.e. flue wall) is a cavity where natural gas and pitch volatiles are burned 

in order to supply heat to the anodes. 

Anode baking aims essentially at developing the mechanical properties of the anodes. The 

heat-up temperature gradient, the final temperature and soaking time are the most important 

baking parameters (Mannweiler and Keller 1994). Also a minimal temperature gradient 

between the different positions within the furnace needs to be maintained (Fischer et al. 

1993).  

The heat-up temperature gradient controls the pitch volatiles degassing rate. Pitch 

devolatilization occurs in the 200-600°C range. The pitch volatiles are drawn and burned 

into the walls separating the pits of the baking furnace. This is a major energy input and it 

needs to be kept under control by the baking furnace process control system. The impact of 

a high temperature gradient is the emergence of internal or external cracks due to the 

internal pressure build-up. These cracks can compromise the mechanical properties of the 

anodes and increase in the risk of thermal shock when the anodes are set in the reduction 

cells. They also increase the electrical resistance of the anodes which has a negative impact 

on the energy consumption of the anode in the pots. A too high heat-up gradient can also 

increase the anode porosity which leads to higher air and CO2 reactivity. The maximum 

temperature gradient is in the range 10-14°C/h (Fischer et al. 1993). 
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Final anode temperature is also an important parameter (i.e. the soaking temperature). It has 

a great influence on the crystallinity, measured by the LC (i.e. measure of the crystallite 

length) of the anode. Thermal conductivity increases with the final baking temperature and 

LC. The CO2 reactivity residue (the amount of anode not reacted) increases with the final 

temperature. Air reactivity residue also follows this trend with the exception of anode with 

high sulfur coke. Desulfurization of the anode can occur at high temperature. This 

phenomenon tends to increase the porosity and increase the air reactivity of the anodes at 

high final baking temperature (Fischer et al. 1993). Temperatures above 1200°C do not 

improve anode quality (Jones 1986). 

The temperature distribution within a pit of a baking furnace depends on its design, its 

maintenance and deterioration stage. It is important to maintain an even temperature 

distribution to obtain uniform anode quality throughout the entire anode population. A large 

range of anode quality will lead to operational problems in the potroom. A longer soaking 

time (i.e. time left at final baking temperature) can contribute to a better temperature 

gradient within the furnace and will also lead to better anode properties (Fischer et al. 

1993). Soaking time should be at least 10 hours in the range of 1150 ± 50°C (Jones 1986). 

2.8 Anode quality estimation 

Some authors (Keller and Fischer 1982; Fischer et al. 1991) have developed models for the 

prediction of anode net carbon consumption (i.e. an anode performance indicator). These 

models are based on the baked anode properties measured from core samples as well as 

some pot design parameters and performance indicators. The models developed in this 

project could be used as input in these carbon consumption models to obtain estimates on 

an anode basis. 

Other authors have investigated the relationships between some raw material properties and 

process parameters and baked anode properties, see Fischer et al. (1995) for an overview of 

those analyses. However, as opposed to the multivariate models developed in this thesis, 

most of past studies consider the effect of only a few variables using a one variable at a 

time approach. For example, Hume et al. (1993a) measured the influence of sodium 

contamination and sulfur content on the anodes CO2 reactivity. Fischer and Perruchoud 
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(1991) studied the effect of butts properties (i.e. hardness and sodium contamination) on the 

anode apparent density, air permeability, flexural strength and air and CO2 reactivity. 

Finally, Fischer et al. (1993) studied the effect of baking furnace parameters (i.e. heat-up 

rate, final baking temperature and soaking time) on the anode electrical resistivity, flexural 

strength, thermal conductivity, air and CO2 reactivity and finally desulfurization (as a 

function of initial sulfur content). 

The major difference between these studies and the project described in the thesis is that 

this work incorporates all the aspect of the manufacturing process form the raw materials to 

the baking furnace into a statistical model in order to predict baked anode properties. 

 



 

Chapter 3 Multivariate statistical methods 

This chapter presents the relevant statistical background information useful for 

understanding of the work presented in this thesis. The basic multivariate analysis methods 

are presented. These methods were developed in the field of chemometrics. Svante Wold 

defines this field of science as “How to get chemically relevant information out of 

measured chemical data, how to represent and display this information, and how to get such 

information into data” (Wold 1995). The goal of these methods is to extract the most useful 

information from the data. It has been extended to chemical process analysis and 

monitoring as well (Wise and Gallagher 1996) and (MacGregor and Kourti 1995). Two of 

the most used methods, Principal Component Analysis (PCA) and Projection to Latent 

Structures (PLS), also referred to as Partial Least Squares, are presented in the following 

sections together with a discussion on data scaling and on the selection of the number of 

latent variables to include in the models. 

In this thesis, the following notation is used. Vectors are shown using bold lowercase 

characters (lowercase), matrices are represented by bold capital characters (CAPITAL) 

and the transpose operator is illustrated using uppercase capital T (e.g. XT or tT). 

3.1 Principal Component Analysis (PCA) 

Principal Component Analysis is the basic multivariate data analysis approach. It is used to 

model and investigate multivariate datasets. Detailed tutorial and examples can be found in 

(Wold et al. 1987) and (Kourti 2005). Assume X, a data table made of I observations (or 

measurements) obtained from J different variables as illustrated in Figure 8. Most industrial 

datasets are very large, noisy, and the variables are typically highly collinear (e.g. X is not 

full rank). However, measuring hundreds to thousands of variables on a given process does 

not necessarily mean that a hundred independent events occurred on this process. In fact, 

process operation is usually driven by a much lower number of underlying independent 

events called lurking or latent variables (LV) (the p’s in Figure 8). These LVs cause the 

large number of process variables to vary together in certain directions (i.e. in a correlated 
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fashion). PCA is one of the basic methods for extracting these few latent variables 

capturing most of variance in a dataset. The projection of the dataset onto the lower 

dimensional space of A dimensions spanned by the latent variables can then be used to 

visualise and interpret the relationships between the variables and between the 

observations. 

 

Figure 8 – Schematic representation of PCA 

The first principal component is the linear combination of the J columns (variables) of X, 

defined by the orthonormal vector p1, explaining the greatest amount of variance in the 

dataset. This is mathematically formulated as an eigenvector-eigenvalue problem with the 

following objective function: 

 { }T T Tmax  subject to = 1
1

1 1 1 1p
p X Xp p p  (2) 

where the term with brackets represents the variance of the first latent variable t1 defined as 

the projection of X in the direction of p1: 

 1 1=t   Xp  (3) 

This latent variable explains the most variance in X and it is removed from the dataset 

leaving the residual matrix E1: 

 T
1 1 1=E   X - t p  (4) 

If the first component is not sufficient for explaining the variations in X, a second PCA 

component can be added to the model. It corresponds to the linear combination of the J 
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variables explaining the greatest amount of variance not captured by the first component, 

(i.e. left in the residual matrix E1). The second component is the solution to the following 

eigen problem: 

 { }T T T Tmax  subject to = 1 and = 0
2

2 2 2 2 1 2p
p X Xp p p p p  (5) 

The additional constraint for this second component ensures that the latent variables are 

orthogonal to each other (e.g. they are independent). Additional components can be added 

sequentially to the PCA model using expression (5) until the desired number of latent 

variables (A) is computed. The maximum number of LVs is J, but for industrial data A is 

usually smaller than J (A << J) due to the highly collinear structure of the data. The final 

model has the following structure: 

 = TX  TP + E  (6) 

where the score and loading vectors are collected in the matrices T (IxA) and P (JxA) and 

the residuals are stored in matrix E (IxJ). In summary, PCA performs the eigenvector 

decomposition of X. The p vectors are the eigenvectors of XTX and the t vectors are the 

eigenvectors of XXT. 

For the numerical computation of the p and t vectors, the Nonlinear Iterative Partial Least 

Squares (NIPALS) algorithm is used. This method is scaling dependent and this issue will 

be discussed in section 3.3. Figure 9 shows the algorithm details of NIPALS for PCA 

(Geladi and Kowalski 1986). 
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Figure 9 – NIPALS algorithm for PCA 

When J is very large, which is normally the case with industrial data, this method is 

advantageous compared to eigenvector decomposition since it is often not necessary to 

compute all latent variables (in this case, A<<J). 

3.2 Projection to Latent Structures (PLS) 

Projection to Latent Structure is a multivariate regression method. Consider a second 

dataset Y of H variables and I observations (e.g. response variables such as product quality 

attributes) as seen in Figure 10. The PLS method is used to explore the relationships 

existing within and in between both datasets, X and Y. It can be seen as an extension of 

PCA, but for two sets of data. 

 

Figure 10 – Matrices of PLS 

1. Set t to any column of X.
2. Start convergence loop.

2.1. p = XTt/(tTt)
2.2. p = p/(pTp) ½

2.3. t = Xp
2.4. Check for convergence of t and p.

Continue to step 3 if converged.
3. E = X – tpT

4. Store p and t as new columns in P and T.
5. Restart at step 1, replacing X by E.
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The basic assumption behind PLS is that variations in X and Y are linked by a common set 

of A latent variables T and U respectively (I×A). These latent variables are the directions in 

the X and Y space that maximize the covariance between these two datasets. Additional 

details and tutorials can be found in (Geladi and Kowalski 1986), (Höskuldsson 1988), 

(Burnham et al. 1996), (Burnham et al. 1999), (Wold et al. 2001), (Martens 2001), and 

(Kourti 2005). 

Mathematically, the latent variables are computed as a set of linear combinations of the X 

descriptor variables defined by the weight vectors wi, i = 1,... , A, to maximize the squared 

covariance between X and Y. The solution to this problem is again formulated as an eigen 

problem with the following objective function: 

 { }T T T T Tmax  subject to = 1 and to = 0 for i i i i i j i j≠
w

w X YY Xw w w w w
i

 (7) 

As for PCA, the set of constraints ensure that the weight vectors wi are orthonormal and 

that latent variables are orthogonal to each other (e.g. they are independent). The PLS 

model structure is described below, and is also shown schematically in Figure 10. 

 = +TX TP E  (8) 

 = +TY TQ F  (9) 

 
( )-1

=

=

*

* T

T XW

W W P W
 (10) 

T (I×A) is the common latent variable space (A dimensions) that models the relationship 

between X and Y. They are the combination of the X variables that are the most highly 

correlated with the data in Y. The weight of each variable in the common latent space is the 

matrix W* (J×A). The P (J×A) and Q (H×A) matrices contain the loading vectors relating 

the common latent variable space in each X and Y space respectively. E (I×J) and F (I×H) 

are the PLS model residuals. It was shown by (Höskuldsson 1988) that the vectors w, q, t 

and u are the eigenvectors of the following matrices XTYYTX, YTXXTY, XXTYYT and 

YYTXXT respectively. 
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The NIPALS algorithm was adapted to PLS by (Geladi and Kowalski 1986) and 

(Höskuldsson 1988) to compute the PLS latent variables sequentially. With this method, 

only the desired number of LV’s are calculated. The algorithm is shown in Figure 11. The 

PLS vectors are also scaling dependent. This will be discussed with the selection of the 

number of latent variables in sections 3.3 and 3.4, respectively. 

 

Figure 11 – NIPALS algorithm for PLS 

3.3 Data scaling 

Both PCA and PLS methods are sensitive to how the X and Y data matrices are scaled. 

When no prior knowledge is available on the relative importance of the variables, the 

common practice is to scale them to unit variance after applying mean-centering. This 

scaling procedure is applied to each variable (i.e. columns) of the X and Y data matrices. 

Consider a column vector (xj) of the X data matrix and its mean value (xj,mean) and standard 

deviation (xj,std). The scaled values (xj*) are obtained using the following equation (element 

by element division is assumed): 

 
( ),mean*

,std

-
= j j

j
j

x x
x

x
 (11) 

1. Set u to any column of Y.
2. Start convergence loop.

2.1. w = XTu/(uTu)
2.2. w = w/(wTw) ½

2.3. t = Xw
2.4. q = YTt/(tTt)
2.5. u = Yq/(qTq)
2.4. Check for convergence of t or u.

Continue to step 3 if converged.
3. p = XTt/(tTt)
4. E = X – tpT and F = Y – tqT

5. Store w, p, t and u as new columns in W, P, T and U.
6. Restart at step 1, replacing X by E and Y by F.
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This method is also called auto-scaling. Mean-centering allow the computation of the 

variations of the variables around there mean and scaling to unit variance gives equal 

importance to all the variable in the models as not all of them are measured in the same 

engineering units (Geladi and Kowalski 1986). 

3.4 Number of latent variables (A) 

Industrial data are typically highly collinear and noisy. Collinearity implies that a limited 

number of latent variables are needed to capture and explain most of the variations in a 

dataset (X and/or Y). The corruption of the data by noise means that carefulness must be 

used to model only the systematic variation (i.e. structured variations) and to ignore the 

noise. When the correct number of latent variables (A) is selected, the important 

information is stored in the loadings and weight matrices (P, Q and W*) and the irrelevant 

variations are left in the residuals (E and F). The most commonly used method for selecting 

the number of latent variable is cross-validation (Wold 1978), but other methods also exist 

to determine the model order (Nomikos and MacGregor 1995) and (Valle et al. 1999). 

The cross-validation (CV) method keeps adding latent variables to the model until the latest 

component does not significantly improve predictions of X (PCA) or Y (PLS). For the 

cross-validation procedure, the I observations in X and/or Y are divided into g sub-groups 

of n observations (I=gn). Each sub-group is removed from the data once and only once and 

an A latent variable PCA or PLS model is built on the remaining g-1 sub-groups. 

Predictions are computed for the group left out of the analysis and the prediction error sum 

of squares (PRESS) is computed for this sub-group. PRESS(a) is the sum of the PRESS 

values for all g sub-groups for a model with a latent variables (a = 1,2,…A). The model 

predictive ability is than evaluated with the predictive multiple correlation coefficient 

(Q2
CV): 

 ( ) ( )
( )

2
CV

r

PRESS
Q = 1-

SS -1
a

a
a

 (12) 

where 
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= −∑∑  (13) 

and 

 ( )
2

r , ,
1 1

SS (a -1) y y (a -1)
I J

i j i j
i j= =

= −∑∑  (14) 

In the above equations, I is the number of observations and J is the number of variables and 

a is the number of model components (a = 1,2,…A), and SSr(a-1) is the residual sum of 

squares of the model with a-1 latent variables. The number of principal components or 

latent variables (A) to keep in the model is selected to be the one achieving the highest 

predictive ability.  

Selecting a too small number of latent variables leaves some structured information in the 

residuals. Selecting too many latent variables leads to overfitting and modeling of the 

random noise in the data. 

Alternatively, one could use a separate validation dataset for computing predictive ability. 

While adding one LV at a time, it is possible to compute the PRESS on the validation set 

until the predictive ability starts to degrade due to overfitting. This approach with external 

data is the better way to validate a model, but a high number of observations are needed in 

order to split a dataset into a training set and a validation set. 

3.5 Model interpretation tools 

Aside from the model structure of PCA and PLS, which are powerful methods for process 

modeling, a number of tools can be use to help interpret the models and learn from the data. 

First, the score plot and loadings plot are used to interpret the relationship between the 

observations and the variables, respectively. A combination of two or three latent variables 

can be simultaneously visualized through these tools using 2D or 3D scatter plots. The use 

of these score plots will be illustrated later in the results section. 



 29 
 

The DModX is the distance of an observation to its projection on the latent variable space 

(e.g. the residual). It is useful for detecting outliers because it highlights observations with a 

different correlation structure than the model (i.e. outliers in the space orthogonal to the LV 

space). 

 
2

1
( )

DModX ( ) ==
−

∑ J
ijj

i

e a
a

J A
 (15) 

DModXi(a) is computed from equation (15), where eij(a) is the residual of observation i and 

variable j obtained with a model built using a latent variables. 

 ( ), ,( ) y y ( )= −ij i j i je a a  (16) 

The Hotelling’s T2 is the Mahalanobis distance of an observation to the center of the LV 

space. It can also be used for detecting outliers in the LV space. 
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where, 
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−
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 (18) 

approximately follows an F distribution with A and J-A degrees of freedom. In equation 

(17), T2
i is the Hotelling’s distance for an observation, tia is the score of an observation for 

the a latent variable and s2
ta is the variance of ta. 

An additional tool which can help identify important variables in a PLS model is the 

variable importance in projection (VIP) which is an indication of the importance of a 

variable in predicting the Y variables: 

 ( )2
,, 1 (VIP J w SSY( ) / SSY )A

j aj A a a tot
=

= ∑  (19) 
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where wj,a is the loading weight of the jth variable in the ath PLS latent variable, SSY(a) is 

the sum of squares of Y explained by the ath LV of the PLS model and SSY(tot) is the sum 

of squares of Y explained by the model. Usually, variables with a VIP greater than 1 are 

considered important for the model (Eriksson et al. 2001). 

Finally a useful interpretation tool is the contribution plot. It essentially consists of the 

difference in the values of a particular variable between two time points (or averaged over 

some time windows) weighted by the importance of that variable in the model given by the 

PLS model weights (w*). It indicates which combination of variables contributes the most 

to a deviation in the score space (T) of a latent variable model. It is not a cause and effect 

relationship, but it is a good indicator of possible root causes. The calculation of the 

contributions is explained in Kourti (2005) and Weterhuis et al. (2000). The contribution of 

variable j, to the shift between two observations (k1 and k2) is computed using the 

expression below. 
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where xj,k1 and xj,k2 are the values of the jth variable at time k1 and k2; wj,a is the weight 

associated to the jth variable of the ath latent variable and s2
ta is the variance of the ath score. 

Dividing by the score variance gives an equal importance of deviations in each LV. For 

contribution from a group of observations to another group, the difference in the mean 

value of the observation in each group for each variable is used. 

 



 

Chapter 4 Data collection 

This chapter describes how the data was collected and pre-treated prior to building the PLS 

models. The data used for this project were collected at the Alcoa Deschambault smelter 

from February 23, 2009 to January 2, 2011. All data presented in this thesis are auto-scaled. 

Data were collected from raw material laboratory analyses and suppliers certificate of 

analysis (COA), green mill process and baking furnace data historians, and core sample 

laboratory analysis. Most raw material data were stored as weekly averages, but some data 

were only available on a per shipment basis. The process parameters from the paste plant 

are available on a one minute basis. Baking furnace data are available in two different 

formats. The first consists of the data collected from the baking furnace at the end of each 

fire move and used by the plant personnel to monitor the baking process. These data were 

available for all the models computed in this work. The second set of baking furnace data is 

available for a subset of the original dataset with anodes manufactured from February 23, 

2009 to May 21, 2010. It consists of the entire temperature profile during most of the 

baking cycle. Finally, core sample results were obtained from Deschambault’s quality 

control laboratory database. 

4.1 Coring strategy 

There is a particular coring strategy used at Deschambault. Two anodes are cored in each 

section of the baking furnace. The position of the anodes in the oven is presented in Figure 

12. The core samples are drilled from the top at the same position in each anode as shown 

in Figure 13. The core sample height is smaller than the anode height (anode not cored all 

the way to the bottom). 
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Figure 12 – Coring positions in the baking furnace (Courtesy of Alcoa) 

 

Figure 13 – Core sample position in the anode (Courtesy of Alcoa) 

Seventeen anodes are chosen for coring each production week and are sent to the lab. 

Different tests are performed on different sets of anode based on a standardized test plan 

specific to the smelter. Physical properties and reactivity properties are measured using 

different core samples (i.e. different anodes) since the core samples are too small for 

performing all the tests. Therefore, separate PLS models are built for physical and 

reactivity properties. These models will be presented in Chapter 5. 

Top view of a section Side view of a pit

Position 1
Position 2

Pit #1

Pit #3
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4.2 Data synchronization 

To build the models each measured variable need to be synchronized to a cored anode. This 

section describes how the traceability and synchronization of an anode was established at 

Deschambault’s carbon plant. Each anode receives a unique sequential number. This 

number is applied by an automated mechanical punch when the green anode is formed in 

the vibro-compactors. This number can be tracked through the baking step. In the paste 

plant database, the time and date of the anode fabrication is stored along its identification 

number. This, together with the core sample ID given to each core by the lab, is the basis 

for the synchronization of the dataset. Figure 14 presents the synchronization scheme used 

in this project. 

 

Figure 14 – Synchronization scheme 

The synchronization starts with the core lab ID. With this number it is possible to obtain the 

anode ID number and the information about the baking furnace section, position, loading 

and unloading dates. From the anode ID number, the manufacturing date is retrieved and 

the synchronization of paste plant process and raw material data is possible. From the 

baking information, it is possible to extract fire move data and baking profiles. 

All the data were extracted from Deschambault using their dedicated historian software and 

transferred in Excel spreadsheets. For the paste plant data and baking furnace profile, this 

represents enormous amount of data. All the computation for the synchronization of the 

Core lab ID

Anode ID number

Manufacturing date

Weekly raw material 
properties

Lag in paste plant 
process parameters 

from time of fabrication

Fire move data Baking profile

Loading and
unloading dates

Section and position of 
anode in baking 

furnace

Paste plant data Baking furnace data
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data was performed using the author’s custom codes developed using Matlab® R2009B 

(The Mathworks Inc., Natick, MA, USA). For the statistical analysis of the data and model 

computation, SIMCA-P+ Version 11.0.0.0 (Umetrics Inc., Kinnelon, NJ, USA) was used. 

Ultimately, the synchronization code allows the alignment of all the data into a matrix 

containing all the raw material properties (Z) and the process operating parameters (X) and 

a second matrix containing the desired anode quality variables (Y). This synchronization 

needs to be done for the physical property model and for the reactivity property model 

separately since these were measured from different anodes. The observations (anodes) 

used in the physical property model containing additional baking temperature profiles are 

stored in a third dataset and used in a separate PLS model. Figure 15 shows the different 

dataset for the three models. Details of the synchronization for every step of the 

manufacturing process are described in sections 4.2.1 to 4.2.3. 

 

Figure 15 – Data matrices for: a) Physical property model, b) Physical property with baking 
profile information model and c) Reactivity property model 
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4.2.1 Raw material synchronization 
The raw material synchronization is made on a weekly basis. During this thesis, 

Deschambault received coke from six different suppliers and pitch from two different 

suppliers. The anode recipe usually combines 2-3 types of cokes and a single type of coal 

tar pitch. The different raw material blends used throughout the analysis period are 

presented in Table 4. In this table, coke suppliers are identified by letters (A-E) and pitch 

suppliers with numbers (1-2). 

Table 4 – Raw material blend 

 

For pitch quality, a weekly average of all the material received was computed using the 

supplier’s certificate of analysis (COA). The coke properties are measured at 

Deschambault’s laboratory from sample gathered from unloading railcars. The butt samples 

were taken from the size distribution analysis sample collected every day at the paste plant. 

A composite of all butt samples is analyzed each week. The raw material properties are 

listed in Table 5. 

Raw material 
blend Coke 1 Coke 2 Coke 3 Pitch

1 A B C 1
2 A B D 1
3 A B D 2
4 C D - 2
5 C E - 2
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Table 5 – Raw material property variables 

 

4.2.2 Paste plant data synchronization 
The lag structure for the paste plant synchronization is presented in Figure 16. The values 

were determined after discussion with plant process engineers and operators based on their 

experience. 

Variable ID Properties Units
Coke real dens Coke real density g/cm3

Coke Na Coke sodium ppm
Coke Ca Coke calicum ppm
Coke S Coke sulphur %
Coke V Coke vanadium ppm

Coke 28/48 app dens Coke tapped bulk density -28 to +48 
mesh fractions g/cm3

Coke Fe Coke iron ppm
Coke Si Coke silicon ppm
Coke Ni Coke nickel ppm
Coke ash Coke ash ppm
Pitch SP Pitch softening point °C
Pitch TS Pitch toluene soluble fraction %

Pitch Beta Pitch b fraction %
Pitch QI Pitch quinoline insoluble fraction %

Pitch B/QI Pitch b/QI fractions ratio ---
Pitch CV Pitch coking value %
Pitch ash Pitch ash %
Pitch S Pitch sulphur %

Pitch dist Pitch distillate at 355°C %
Butts Al Butts aluminium ppm
Butts Ca Butts calcium ppm
Butts %F Butts fluorine %
Butts ash Butts ash %
Butts Fe Butts iron ppm
Butts Ni Butts nickel ppm
Butts Si Butts silicon ppm
Butts Na Butts sodium ppm
Butts S Butts sulphur %
Butts V Butts vanadium ppm

Butts Na/Ca Butts sodium/calcium ratio ---
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Figure 16 – Paste plant lag structure 

Paste plant process data are available on a minute basis from the historians. The values for 

each variable are synchronized to the closest fabrication date (precise to the minutes) minus 

the lag for that variable. For the equipments having a residence time longer than one minute 

(e.g. pre-heater and mixers), the mean of all the data between the lag values were computed 

as follows: 
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where L is the lag from the manufacturing time in minutes and xi,j,l is the value of variable j 

at observation i and lag l. For example, the mean value of the first mixer for the ith 

observation is calculated with lag from -8 minutes to -13 minutes because the residence 

time is 5 minutes. 

The process variables used in the analysis are listed in Table 6. 
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Table 6 – Paste plant variables 

 

Variable ID Properties Units
Coarse (tph) Coke coarse mass feed rate ton/h
Fines (tph) Coke fines mass feed rate ton/h
Inter. (tph) Coke intermediate mass feed rate ton/h
Butts (tph) Butts mass feed rate ton/h
Pitch (tph) Pitch mass feed rate ton/h

Green recyc (tph) Green recycle mass feed rate ton/h
Dry agg (tph) Dry aggregate mass feed rate ton/h
Paste (tph) Total paste mass feed rate ton/h
Coarse % Coke coarse ratio %
Fines % Coke fines ratio %
Inter. % Coke intermediate ratio %
Butts % Butts ratio %
Pitch % Pitch ratio %

Green recyc % Green recycle ratio %
Fines rot valve speed Fines rotating valve feeder speed rpm

Agg pre-heater T Dry aggregate temperature after pre-heater °C
Agg pre-heater_1 current Dry aggregate pre-heater 1 current draw Amp
Agg pre-heater_2 current Dry aggregate pre-heater 2 current draw Amp

MX1 KW mean Paste mixer 1 mean power kW/ton
MX1 KW max Paste mixer 1 minimum power kW/ton
MX1 KW min Paste mixer 1 maximum power kW/ton

MX1 therm oil T Paste mixer 1 thermal oil temperature °C
MX1 P Paste mixer 1 pressure psi

MX1 current Paste mixer 1 current draw Amp
Paste T between MX Paste temperature after mixer 1 °C

MX2 KW mean pan 1 Paste mixer 2 pan 1 mean power kW
MX2 KW mean pan 2 Paste mixer 2 pan 2 mean power kW
MX2 KW mean rotor Paste mixer 2 rotor mean power kW

MX2 paste weight Paste mixer 2 paste load kg
MX2 dump gate pos Paste mixer 2 dump gate opening %
Paste T after MX2 Paste temperature after mixer 2 °C
Anode type (dim) Anode dimensions ---

VC vib time Vibrocompation vibration time s
Green anode height Green anode height mm

VC bellows P Vibrocompator bellows pressure psi

PP mean ext T
Paste plant mean external temparature 3 hours 

around anode manufaturing time °C
Core state Qualitative quality of the anoe core ---
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In Table 6, the ratios of the paste constituent are calculated based on total paste feed rate 

instead of on a dry aggregate feed rate basis. The size distribution of the different fractions 

and the dry aggregate is measured every day. For the coarse (~¼in to +30 mesh), 

intermediate (+50 mesh to +100 mesh) and butt fractions a sample is grabbed once every 12 

hour shifts. The size distributions measured during the shift when the anode was produced 

was kept in the models. For the fines (- 100 mesh) and the dry aggregate, three samples are 

analysed during each operator shifts. The mean value of the size distribution analysis is 

stored in the datasets. The size distribution variables used in the analysis are listed in Table 

7 where Rt stands for the material retained and Pt is an abbreviation for material that passed 

a given mesh size. 

Table 7 – Size distribution variables 

 

4.2.3 Baking furnace data synchronization 
For the baking furnace, the first set of data is the fire move data. These are the maximum 

temperature obtained during one cycle for each stage of the baking process (e.g. max 

temperature under the first burner bridge, fire cycle time, mean baked weight for a section, 

etc. (Table 8)). For the temperature, the data are taken at different position in the oven 

section. They are described in Figure 17. Position A and B are used to measure external 

anode temperature during the three fire cycles and position C is used to measure the starting 

temperature which is the external temperature of the anode after the devolatilization of the 

pitch. 

Variable ID Properties Units
Butts Rt3/8+Rt4 Butts Rt3/8+Rt4 fractions %

Coarse Rt4 Coke coarse Rt4 fraction %
Coarse Rt8 Coke coarse Rt8 fraction %

Inter Rt50+Rt100 Coke intermidiate Rt50+Rt100 fraction %
Fines Pt200 Coke fines Pt200 fraction %
Agg Rt3/8 Dry aggregate Rt3/8 fraction %

Agg Rt4@Rt30 Dry aggregate Rt4@Rt30 fractions %
Agg Rt50+Rt100 Dry aggregate Rt50+Rt100 fractions %
Agg Rt200+Pt200 Dry aggregate Rt200+Pt200 fractions %

Agg Pt200 Dry aggregate Pt200 fraction %
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Figure 17 – Position of anode temperature measurements (Courtesy of Alcoa) 

Table 8 – Fire move data 

   

For the second set of data, information is extracted from the baking profile of a section in 

the baking furnace. An example of profile is presented in Figure 18. The anode temperature 

is measured at the position A and B as described above. The flue wall temperature is 

calculated as the mean value between the two flues on each side of the core anode (e.g. 

flues 1 and 2 for anode 1 and flues 3 and 4 for anode 2). 

Top view of a section Side view of a pit
Position BPosition A Position C

Pit #1
Flue #1

Pit #2
Flue #2

Flue #3

Pit #6
Flue #6

Flue #7

Pit #3

Variable ID Properties Units
Oven Oven (1 or 2) ---
Fire Fire (2 per oven) ---

Pit position Position 1 or 2 ---
Fire cycle T Duration of fire cycle time hr

BF pit starting T Baking furnace temparature after burning of the pitch volatiles (position C) °C
BB1 pit max T pos A First burner bridge maximum temperature (position A) °C
BB2 pit max T pos A Second burner bridge maximum temperature (position A) °C
BB3 pit max T pos A Third burner bridge maximum temperature (position A) °C
BB3 pit max T pos B Third burner bridge maximum temperature (position B) °C

BB1 flue 3 max T First burner bridge maximum temperature (flue #3) °C
BB3 flue 3 max T Third burner bridge maximum temperature (flue #3) °C

BB3 flue 3 T set point Third burner bridge temperature set point (flue #3) °C
BF mean ext T Baking furnace mean external temparature during the baking cycle °C
BF min ext T Baking furnace minimum external temparature during the baking cycle °C
BF max ext T Baking furnace maximum external temparature during the baking cycle °C
BF ext T var Baking furnace external temparature variance during the baking cycle °C
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Figure 18 – Temperature profiles available for a section of the baking furnace and the 
second order polynomial fit. 

To reduce the amount of data used in the models, the parameters of second order 

polynomial equations fitted on the profiles (i.e. A, B and C) were used instead of the full 

trajectory data. Two other methods could have been used instead of the polynomials. First, 

a PCA model on the trajectories could have been computed and the scores (T) could have 

been used as new X variables in the PLS model. Secondly, the entire trajectories (3 way 

array) could have been unfolded observation-wise and all the data points added as new 

variables in the PLS model (i.e. multiway method). For simplicity and due to time 

restriction, the polynomial fitting was used in this project. 

 ( ) 2A + BT + CTf t =  (22) 

In the previous equation, t is the time, T the temperature and A, B and C the coefficient of 

the polynomial. The pressure profile measured at the under pressure bridge (UPB) was also 

collected. A first order polynomial was used to fit this profile. 

 ( ) A + BTf t =  (23) 

Figure 19 shows the profiles for the UPB. 
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Figure 19 – Under pressure bridge pressure profile and the first order polynomial fit. 

A first order polynomial was used for the pressure profile because these profiles are almost 

flat during the baking cycle. The minimum and maximum values as well as the variance of 

pressure during each cycle were also incorporated in the data matrix in addition to the 

parameters of the first order polynomial fit. However, the high frequency variations that 

appear on the figure above are due to the scale of the pressure axis (not shown for 

confidentiality reasons) which is very small. For this profile the mean value of the flue 

pressure on each side of the cored anode pit was computed at each time interval. 

Table 9 – Baking furnace profiles 

 

For each of the profiles listed in Table 9, the polynomial coefficients are computed with a 

number of statistical variables listed in Table 10. This method is used to extract as much 

Variable ID Profile
BB1 A T Burner bridge 1 anode A temperature
BB2 A T Burner bridge 2 anode A temperature
BB3 A T Burner bridge 3 anode A temperature
BB3 B T Burner bridge 3 anode B temperature

UPB flue T Under pressure bridge flue temerature
BB1 flue T Burner bridge 1 flue temperature
BB2 flue T Burner bridge 2 flue temperature
BB3 flue T Burner bridge 3 flue temperature

UPB P Under pressure bridge pressure
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information as possible for the different profiles and to compare them for all the cored 

anodes. 

Table 10 – Baking profile information computed from the polynomial fits 

 

 

Variable ID Baking furnace profile information
0 A, polynomial constant
1 B, 1st degree coefficient

2 C, 2nd degree coefficient (for the 
temperature profiles only)

R2 Fit of the polynomial (R2)
min Minimum value
max Maximum value
mean Mean value



 

Chapter 5 Results and discussion 

The results obtained for the various models are presented and discussed in this chapter. The 

databases obtained using different sets of anode properties Y (physical properties and 

reactivities) were divided in two subsets: a training and an external validation sets. 

Approximately 2/3 of the data were used for training the models. The observations included 

in the training and validation sets were selected as follows. First, numbers 1 to 3 were 

randomly assigned to each observation. Then, observations labelled 1 and 2 were selected 

for training the models and those labelled 3 were kept for validation. 

5.1 Physical property models 

For physical properties, three models were investigated and the main difference between 

them is the information included in the process data matrix X. The first model only 

accounts for transport delay (i.e. residence time) between/within the various process 

equipments, and includes the raw material properties (listed in Table 5), the paste plant 

operating conditions (listed in Table 6 and Table 7) and basic information about the baking 

furnace (listed in Table 8). The second model uses the same process variables as the first, 

but the X matrix was expanded with lags of certain variables collected from the paste plant 

(variables measured at a higher frequency in Table 6) to account for additional process 

dynamics and uncertainties in the estimation of the various transport delays. Finally, the 

last physical model includes baking profile information and considers only transport delays 

from the paste plant (i.e. as for the first model). 

A comparison between the first two models is proposed in order to verify whether 

including additional dynamics is necessary for predicting baked anode properties. They 

contain the same observations except for two anodes that had outliers in the lags and these 

two were excluded from the second model. The same procedure as described in section 

4.2.2 was used to synchronize the data. For the second model, lags of selected paste plant 

variables were included to span a time window of -5 minutes to +2 minutes (sampled every 

minute) around their synchronized time (i.e. that of the first model). That is, the lags of the 

process variables correspond to the following time points [k-5 k-4 k-3 k-2 k-1 k k+1 k+2] 
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where k corresponds to the synchronized time (in minutes) of the first model considering 

only transport delays. Therefore, the selected paste plant variables appear at eight different 

times in the model spanning a time period of 7 minutes which is greater than vibro-

compaction cycle time. The third model (i.e. with baking profile) will be discussed in more 

details in a separate section since it was built using a smaller subset of the original data. 

Table 11 presents a summary of the results obtained for the first three models. The number 

of observations, X- and Y-variables, latent variables (LVs), as well as overall statistics 

showing the model performance in fit and validation are shown in this Table. 

Table 11 – Summary of the results of physical models 

 

The R2 statistics are the cumulative multiple correlation coefficients quantifying the fit of 

the model (i.e. the variance explained by the model) for both the X and Y data. The R2X is 

the fraction of variance of X (process variables) used by the model for predicting Y. The 

R2Y is the fraction of variance of the Y (anode quality) explained by the model. The indices 

“train” and “valid” mean that the R2 statistics were computed on the training and validation 

datasets, respectively. The Q2Y statistics is the variance of Y predicted by the model 

through the cross-validation procedure (used for selecting the number of latent variables in 

each model). The R2Y and Q2Y statistics shown in Table 11 were computed based on all Y-

variables (i.e. overall statistics). For the baking profile model there is no validation set since 

the number of observation is too small. The statistics for each individual Y-variable will be 

presented later for selected models. 

Physical model
Transport 
delay only

Dynamics 
(with lags)

Baking 
profile

Number of training observations 438 436 302
Number of validation observations 238 238 ---
Number of X variables 96 313 159
Number of Y variables 10 10 10
Number of latent variables 11 14 11
R2Xtrain (%) 54,6 74,9 49,9

R2Ytrain (%) 45,5 44,8 51,8

Q2Ytrain (%) 28,7 24,7 23,5

R2Yvalid (%) 42,9 40,5 ---
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The variance of the anode quality explained by the models (i.e. R2Y) is similar for the first 

two models. It is not possible to compare the model with baking profiles for now since the 

model is not computed on the same set of observations. Section 5.1.2 discusses this model 

further. The Q2 is 4% smaller for the lagged model compared to the transport delay model 

and the fit on the validation set is similar. Therefore the lags do not seem to improve the 

model predictive ability compared to the transport delay model. This is probably due to the 

fact that the dynamic in the paste plant is much slower than 5-10 minutes when operated in 

steady-state. The results of both models are presented in Table 12 for each anode 

properties. 

Table 12 – Results of the first two physical models (transport delay and lags) for each 
physical properties 

 

The Y fit ranges from 27,31% to 67,74% for the transport delay model and from 28,37% to 

63,77% for the lags model. Usually, higher R2 values are expected using statistical 

regression methods. However, it should be kept in mind that these results are arising from 

industrial process data and not from laboratory measurements or design of experiments. 

Considering the industrial nature and the level of noise in the data as well as the 

uncertainties related to the measurement of raw material properties and the residence time 

within each piece of equipment these are considered as good results. Except for thermal 

conductivity, compressive strength and young’s modulus, the model explains a significant 

amount of the variance of anode properties. Finally, except for the baked weight and real 

R2Ytrain (%) R2Yvalid (%) R2Ytrain (%) R2Yvalid (%)
Green apparent density 63,80 60,56 63,77 58,13
Green weight 53,34 44,59 52,86 41,65
Baked weight 59,82 53,30 60,88 55,04
Thermal conductivity 27,31 30,56 28,37 32,14
Baked apparent density 40,80 41,95 40,54 40,51
Real density 42,08 46,93 43,12 45,30
Compressive strength 28,76 28,39 29,81 23,66
LC 67,74 61,51 63,28 55,57
Young's modulus 27,37 22,40 26,95 21,07
Electrical resistivity 43,75 38,65 38,18 31,86

Lags model

Variable ID

Transport  delay model
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density, the model with no lag is slightly superior or equal to the lagged model. For these 

reasons and because of the high number of variable in the lagged model, only the model 

without lag will be further discussed. 

5.1.1 Physical transport delay model 
The rest of this section will focus on performance assessment and interpretation of the 

physical property model considering transport delays only (first model). Table 13 displays 

the details of the variance explained for each of the 11 latent variables selected through the 

cross-validation procedure based on the training dataset. But the model was than validated 

with the validation dataset. The discussion will focus on the first three LVs because they 

represent most of the total variance explained by the model (i.e. 26 out of 45,5%). The 

acronym “cum” means the cumulative variance explained up the designated latent variable. 

The Q2Y for the last three variables is decreasing because LVs are added as long as at least 

one Y variable Q2 increases, even if the total Q2Y for this component is less than zero. The 

reader is referred to (Eriksson et al. 2001) for more information on how the CV procedure 

is done in the SIMCA-P+ software. 

Table 13 – Physical transport delay model LV details 

 

First the model is checked for outliers using the Hotelling’s T2 (Figure 20) and Distance to 

model or DModX plots (Figure 21) computed based on all model dimensions (11 LVs). 

Latent 
variable (A ) R2Y (%) R2Y(cum) (%) Q2Y (%) Q2Y(cum) (%)
LV 1 12,89 12,89 11,97 11,97
LV 2 8,86 21,75 8,96 19,86
LV 3 4,21 25,97 3,33 22,53
LV 4 7,01 32,97 6,36 27,45
LV 5 2,58 35,56 1,97 28,88
LV 6 3,72 39,27 2,88 30,93
LV 7 1,27 40,54 0,48 31,26
LV 8 1,32 41,85 0,19 31,39
LV 9 1,31 43,16 -1,67 30,25
LV 10 1,27 44,44 -0,83 29,67
LV 11 1,04 45,48 -1,34 28,73
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Figure 20 – Physical transport delay model Hotelling’s T2 

The T2 statistic is an indication of the distance of an observation to the origin of the A-

dimensional latent variable space of the PLS model. It is also an indication of the leverage 

of a given observation on the regression model. The red line represents the approximate 

95% confidence interval on the T2 statistics. Nothing special can be observed in Figure 20. 

There are a just a small number of observations above the 95% T2 distance and no 

significant excursion above the line can be observed. 

 

Figure 21 – Physical transport delay model DModX 

The DModX represents the model residuals (i.e. distance of an observation off the lower 

dimensional latent variable space). The red solid line is the critical distance to the model 

with an approximate 95% confidence level. High DModX values indicate a different 
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correlation structure between the variables for these observations compared to the model. 

For this model, the number of high DModX observation is normal, it is expected to have a 

certain number of observations above the confidence interval (in this case 5%). And there is 

also no long and distinguishable disturbance. 

The score plot of the first three LVs of the model are shown in Figure 22 (3D graph). The 

observations are colored according to the raw material blend used for its fabrication (Table 

4). 

 

Figure 22 – 3D score plot of first three LVs of the physical transport delay model 

Each point in this plot is the result of a linear combination of all X variables according to 

their weight in the model. It is in fact the projection of the multivariate observations in a 96 

dimensional space onto the hyperplane defined by the first three latent variables explaining 

most of the covariance between process data and anode properties. Observations (anodes) 

projected within a similar region of the score plot show similar patterns in their data 

structure; hence they are similar in the latent variable space (i.e. similar combinations of 

raw material properties, recipes, process conditions and anode properties) whereas those 

falling in distinct regions are different. The score plot is useful to investigate the 

Raw material 
blend Coke 1 Coke 2 Coke 3 Pitch

1 A B C 1
2 A B D 1
3 A B D 2
4 C D - 2
5 C E - 2
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relationships between the observations. Figure 22 explicitly shows that raw material 

variations have a significant impact on anode quality. Three main clusters can be observed. 

It is possible to use contribution plots (defined in section 3.5) to investigate the 

combination of variables that are associated with these changes in the LV space. Figure 23 

to Figure 26 show the contribution of each X-variable in the transition between blend 1-2, 

blend 2-3, blend 3-4 and blend 4-5 respectively. Each of these figures displays the 

combinations of variables associated with the shift between the center (mean) of each 

cluster. In these graphs, a positive contribution means that the mean value of a variable 

increased from the initial cluster to the final cluster and a negative contribution indicates a 

decrease in the variable value. 

 

Figure 23 – Change in the variables from blend 1 to blend 2 for the physical transport delay 
model (contribution plot) 

In Figure 23, the combination of variable that contributed to the change in anode quality (in 

the latent variable space) when the transition between blends 1-2 occurred can be 

interpreted. First, a small increase in coke density accompanied by a decrease in the coke 

and butts impurities was observed. This is expected from the coke supplier change. Since 

only one out of three coke suppliers changed, the properties of the coke blend did not 

change much and it is possible to see in Figure 22 that the two blends fall within the same 

region in the latent variable space of the model (i.e. both clusters are close to each other). 
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Changes were also made to process variables during this transition. Paste production rate 

was reduced (i.e. dry aggregate flow rate), and the balance between the coarse and 

intermediate size fractions in the paste was altered (less coarse, more intermediate). During 

the same period, anode dimensions were increased, and outside temperature increased 

(seasonal changes). 

 

Figure 24 – Change in the variables from blend 2 to blend 3 for the physical transport delay 
model (contribution plot) 

In Figure 24, the transition between blends 2-3 can be interpreted. The major difference 

between these blend is due to the pitch supplier change. The new pitch had almost double 

QI content, a higher coking value (CV) as well as lower softening point (SP) and β fraction 

content. The plant had to adjust the pitch quantity in the paste to compensate for the higher 

pitch demand due to the high QI. The bellows pressure was also lowered during the same 

period (i.e. step change). Deschambault had an anode underpitching problem related to 

some process operating conditions that was interfering with their usual method of pitch 

dosing. This high QI pitch and the higher binder ratio in the paste contributed to a higher 

mixer energy requirement. One of the three coke suppliers for this blend was supplying a 
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low sulfur coke for this period. This explains the lower vanadium and sulfur content in the 

coke and butts. 

 

Figure 25 – Change in the variables from blend 3 to blend 4 for the physical transport delay 
model (contribution plot) 

Another important shift occurred when transitioning between blends 3-4 when two cokes 

used in blend 3 were replaced by one new coke in blend 4. The variables contributing the 

most to this change are shown in Figure 25. Coke density (apparent and real) was lower for 

the new coke used in blend 4. The coke impurities were also higher. The pitch ratio in the 

anode was again adjusted for the new coke-pitch combination (i.e. higher pitch QI) and the 

lower bellows pressure (adjusted during the production of blend 3, see Figure 24). Mixer 1 

pressure and mixer 2 energy increased when processing blend 4 compared to blend 3. It is 

not clear if these changes in pressure and mixing energy are due to raw material properties 

variations or process modifications or both. The feed rate of the paste is higher due to 

bigger anodes and the higher throughput of the paste which can cause higher mixing 

energy. On the other hand, coke density has also a good probability of influencing mixing 

properties. 
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Figure 26 – Change in the variables from blend 4 to blend 5 for the physical transport delay 
model (contribution plot) 

Another coke supplier transition occurred between blends 4-5 and Figure 26 shows the 

variables associated with the change. The new coke source had a higher real density while 

the apparent density was lower. Some coke impurities were higher while others showed the 

opposite behaviour. Process operation also changed since both the dry aggregate and paste 

temperatures were lower when processing blend 5 compared to blend 4. The 

coarse/intermediate size ratio was also different in blend 5. 

The use of score plots and contributions plots allowed a quick and simple visualisation of 

the available data and the changes that occurred in raw materials and operation over time. 

Further interpretation of the model will investigated the relationships between the two 

groups of variables (X and Y) as extracted by the PLS model. This can be achieved using 

the loading plots. Figure 27 and Figure 28 present the loading plots for two pairs of latent 

variables: 1-2 and 1-3 respectively. These figures present the loadings of the variables 

belonging to both the X and Y groups. They allow interpreting the correlation structure (i.e. 

relationships) between the regressor variables X (raw material properties, paste plant and 

baking furnace) and the anode properties Y. Variables falling close to each other in the 
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loading plots are positively correlated (i.e. their loadings have the same sign) while those 

having loadings of opposite signs are negatively correlated. The farther away from the 

origin (i.e. the large is the absolute value of their loadings), the stronger is their influence in 

the model and their correlation with Y. The loadings of the first two latent variables are 

shown in Figure 27 and the loadings of LV1 and LV3 are shown in Figure 28. Only the first 

three are shown because they capture most of the variance in the data. It is important to 

note that the relationships described in this analysis are correlations only since the data 

were not collected from a design of experiment approach where independent changes of 

process variables are made. The analysis is rather performed on happenstance data 

collected during production. 

 

Figure 27 – Loadings of the first two LVs for the physical transport delay model showing 
variables with VIP greater than 1.0 

In Figure 27, only the most important variables in the model, those having a VIP > 1 (see 

section 3.5), are shown together with their names. This makes the figure clearer and the 
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interpretation easier. The first LV (horizontal axis) is mainly driven by raw material 

variations, and especially pitch quality variations, since most coke and pitch properties 

have strong loading values in LV1 (i.e. along the horizontal axis). This is expected since 

the quality of the pitch changed drastically from one supplier to the other. The second LV 

(vertical axis) is also affected by some raw material variations (different from those 

extracted in LV1), but also by paste plant process parameters, and particularly by paste 

recipe variations. The variations in pitch ratio, anode dimensions and in the size distribution 

of the dry aggregate are captured by LV2. The increase in anode dimension (length) 

modelled using a binary variable (dim 20 = 0 and dim 23 = 1) is correlated to baked weight 

as expected. Green anode apparent density and baked apparent density are positively 

correlated with coke apparent density. They are correlated with pitch ratio in the first LV 

but not in the second LV. Coke apparent density and anode apparent density are inversely 

correlated to electrical resistivity because of the lower porosity (i.e. higher density). This 

property is negatively correlated with thermal conductivity, which is expected since they 

are both influenced by the density and microstructure of the anode. It is also inversely 

correlated with compressive strength in both LVs. Electrical resistivity is negatively 

correlated with LC and real density in the first LV but positively in the second LV. It was 

expected that the two are inversely correlated since a more crystalline structure decreases 

the electrical resistance. The different behaviour in the two LVs suggests that several 

phenomena affect the electrical resistivity. It is also positively correlated with pitch toluene 

soluble (TS), butts and coke impurities. LC and anode real density are positively correlated 

to coke real density. They are inversely correlated to pitch ratio, paste flow rate, MX1 

pressure and MX2 dump gate opening. This variable is probably related to residence time 

of the paste in the process and thus mixing quality. Finally, the anode apparent density is 

correlated with dry aggregate temperature, coke bulk tapped density, aggregate size 

distribution and green anode density. 
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Figure 28 – Loadings LV1 and LV3 for physical transport delay model 

The loading plot for LV3 vs LV1 is presented in Figure 28. This plot was selected to 

demonstrate the importance of the anode position in the baking furnace. The third latent 

variable is dominated by this variable. The pit position is an indication of the final anode 

temperature. There are no direct measurements of final baking temperature, but the hottest 

anode is located in position 1 and the coldest anode in position 2 of a furnace section. The 

pit position is correlated to electrical resistivity, anode real density and LC. Pit position is 

also modelled using a binary variable with a value of 0 for the hottest anode (position 1) 

and a value of 1 for the coldest (position 2). Based on this definition, when the pit position 

variable increases, this means that the anode baking temperature decreases. In the figure, 

there is a negative correlation between pit position and the variables listed above. It is in 

fact a positive relationship. When the baking temperature increases, the electrical 

resistivity, the real density and the LC increase. 
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Table 14 – VIP for physical transport delay model 

 

The VIP is a metric used to quantify the importance of a variable in the model for 

predicting the Y-variables. Generally, a VIP greater than 1 is considered important 

(Eriksson, et al. 2001). Table 14 provides a list of the 15 most influential variables (i.e. 

highest VIPs) in the model without lag. A list of all VIP for this model is available in Table 

27 in Appendix B. Pit position is the most important variable and this indicates the baking 

step as a strong influence on the model. This parameter is quantified using a binary variable 

taking into account the fact that the baking process is different from one position to 

another. These differences have an important impact, related to the importance of the local 

differences in the furnace on the anode properties. But this effect was not captured by the 

fire move information through max flue and anode temperature. Current anode information 

is not adequate to characterize the baking temperature distribution since only the pit 

position variable is listed as important in the model. Most of the high VIP variables are 

coke or pitch properties. It is expected since the raw material variations have a significant 

impact on anode quality. There are only a few paste plant operating condition variables and 

no size distribution variables with VIP > 1. This could be due to the limited 

feedback/feedforward control actions implemented on the process to counteract variations 

in raw material (except for the pitch ratio and bellows pressure). 

Rank X variable ID VIP Process
1 Pit position 2,850 Baking
2 Green anode height 2,291 Paste plant
3 Butts V 1,544 Raw material (butts)
4 VC bellows P 1,470 Paste plant
5 Pitch ash 1,456 Raw material (pitch)
6 Coke V 1,425 Raw material (coke)
7 Pitch QI 1,355 Raw material (pitch)
8 Anode type (dim)(20) 1,313 Paste plant
9 Pitch B/QI 1,312 Raw material (pitch)
10 Coke 28/48 app dens 1,273 Raw material (coke)
11 BF max ext T 1,239 Baking
12 Butts S 1,239 Raw material (butts)
13 Pitch Beta 1,215 Raw material (pitch)
14 BF mean ext T 1,214 Baking
15 MX1 P 1,197 Paste plant



 58 
 

The predictive ability of the model for each variable is now investigated. The statistics of 

the model for each of them are listed in Table 12. Figure 29 displays the measured values 

against the predicted values for each observation of the validation dataset (e.g. data not 

used for the calibration of the model) for each of the physical properties with transport 

delay model. In these figures, the black triangle is the measured value and the red square is 

the predicted value. All results are scaled to preserve confidentiality of the data. The 

goodness of fit or variance explained by the model on the validation set is displayed in each 

figure. It can be observed that most of the low frequency trends are well captured. Most of 

the unexplained variance is due to high frequency variations. This is consistent with the 

data available. Coke properties are only available on a weekly basis and are a composite of 

samples taken from unloading rail cars. The samples are taken before the coke is added on 

top of the silos and not at the bottom. There are some uncertainties in the residence time of 

the coke depending on the severity of the segregation and the amount of material in the 

silos. Furthermore the samples are taken from very large batches of coke and the 

uncertainties in the laboratory quality measurements are unknown. Therefore it is believed 

that coke properties vary at a higher frequency than what is currently measured on a weekly 

basis, hence a certain percentage of the variance in Y cannot be explained using the 

currently available X data. The reasons for lower R2 values were explained earlier in this 

section, but looking at Figure 29, it is possible to classify the performance of the model. 

Good prediction obtained for a) green apparent density, b) green weight, c) baked weight, 

e) baked apparent density and f) baked real density. The LC results seems widely spread, 

but this is due to a bimodal distribution from the different coring position. This 

phenomenon is explained later in this chapter. Fair results are obtained for j) electrical 

resistivity and d) thermal conductivity. For the electrical resistivity particularly (Figure 29 

j)), the variance of the variable has increased considerably from observations of the 

beginning of 2010 to the end of the dataset. This means that a new, unmeasured source of 

variation, may have affected the process in this period. 
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Figure 29 – Comparison of measured and predicted values (validation set) for: a) GAD, b) 
Green weight, c) Baked weight, d) Thermal conductivity, e) Baked app. density, f) Baked 

real density, g) Compressive strength, h) LC, i) Young’s modulus and j) Electrical 
resistivity 
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Poor predictability is obtained for g) compressive strength and i) Young’s modulus. If coke 

mechanical properties and more detailed information on baking temperature would be 

available, this could help improve the model predictive ability for those variables. It is 

unclear at this point whether the lack of fit of the model for these variables is due to 

important measurements that are missing in the database or to a higher level of 

uncertainties in measuring the mechanical properties. 

Overall, this model is considered good since it captures the important low frequency 

variation in anode quality. For the green and baked weight, the initial increase is due to an 

increase in anode length but the subsequent decrease is due to raw material variations. 

As can be observed in Figure 29 h), the mean crystallite size LC as a widespread 

distribution. This is due to the difference in final baking temperature. Precise final 

temperature for each anode is unknown, but they are different for each position in the pit. 

The difference in LC is shown in Figure 30 where the pit position is identified by different 

colors. Anodes in position 1 (i.e. cored at the hottest position) have systematically higher 

LC values (ANOVA P-value of 0). Since the coring position represents the coldest and 

hottest anodes in the pit, the real crystallite size distribution for anodes located at other 

position within the pits of the baking furnace should fall between these two extreme values 

(when manufactured with the same raw materials). 

 

Figure 30 – LC values colored according to the two pit position used for coring 
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The same trend can be observed for baked real density (ANOVA P-value of 3,83e-5) as 

shown in Figure 31. The real density is influenced by the baking process and also certainly 

by coke initial real density since approximately 65% of the anode is composed of coke. 

 

Figure 31 – Baked real density colored according to pit position used for coring 

A final comment to conclude this section is that raw material variations are of great 

importance for explaining the variability in anode properties quality as shown in Figure 22. 

The position of the anodes in the baking furnace (i.e. pit position) was the most important 

factor in the physical property model. It is probably due to anode final baking temperature 

and soaking time, but these are not measured for each position. The addition of baking 

furnace profile did not improve the prediction ability of the model but this needs to be 

further investigated. 

5.1.2 Model with baking furnace data 
It is observed that baking is an important step in anode manufacturing and that pit position 

has a strong influence on anode quality. The data from the fire move dataset (described in 

section 4.2.3) does not seem to have a strong influence on the physical model discussed in 

section 5.1.1. For this reason baking profile data were retrieved from another data historian 

for a certain number of anodes. These profiles were pre-processed according to the 

procedure explained in section 4.2.3 and this new information (Table 9 and Table 10) was 

added to the transport delay model (i.e. into the original X matrix). A comparison between 
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the two models is provided in Table 15. Both models were computed based on the same 

reduced set of observations (i.e. anodes). The first model is computed with the fire move 

data (first physical model but with a different subset of observations) and the second with 

the baking profile data. 

Table 15 – Model with baking profile comparison 

 

Unfortunately, adding baking profile information does not significantly improve the 

predictive ability of the model. The flue wall temperature profiles might not capture the 

information related to the spatial distribution of the temperature of each anode in the pits. 

The variance explained only increase from 51,2 to 51,8%. For this reason, this model will 

not be discussed further in this thesis. However, it is recommended that the use of baking 

profiles be investigated in future work since other ways of analysing the profile data could 

improve the model and could help obtaining a clearer interpretation of the data and models. 

5.2 Model for the reactivity properties 

For the anode reactivity model, a new synchronized dataset was collected and organized. It 

was not possible to use the same observations as for the previously described models since 

physical properties and reactivities are not obtained based on the same core samples (i.e. 

not from the same baked anode). The same X-variables were used as regressors but the CO2 

and air reactivity measurements obtained from core samples were used as responses 

variables (Y). The reactivity model incorporates all six anode reactivity properties: CO2 and 

air lost, dust and residue. The model statistics are listed in  

Table 16 and Table 17. 

Physical model Fire move Baking profile
Number of observations 302 302
Number of X variables 82 159
Number of Y variables 10 10
Number of latent variables 11 11
R2Xtrain (%) 59,3 49,9

R2Ytrain (%) 51,2 51,8

Q2Ytrain (%) 30,8 23,5
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Table 16 – Reactivity model overall statistics 

 

Table 17 – Reactivity model statistics for each variable 

 

The model explains only 20% to 37% of the anode reactivity variability. This could be 

explained by the raw material data quality measured at a too low frequency (e.g. weekly 

measurements) and also by the lack of information of the microstructure of the anode 

which can have a strong impact of the reactivity. The model is checked for outliers using 

the Hotelling’s T2 (Figure 32) and Distance to model or DModX plots (Figure 33) 

computed based on all three LVs selected by cross-validation. It is possible to observe a 

slight deviation of the first few observations on the Hotelling’s figure. But no major outliers 

are detected. 

Statistics Reactivity model
Number of training observations 260
Number of validation observations 165
Number of X variables 93
Number of Y variables 6
Number of latent variables 3
Overall R2Xtrain (%) 27,3

Overall R2Ytrain (%) 29,1

Overall Q2Ytrain (%) 15,3

Overall R2Yvalid  (%) 19,1

Variable ID R2Ytrain (%) Q2Ytrain (%) R2Yvalid (%)
CRD CO2 dust 20,00 9,80 13,56
CRL CO2 lost 28,26 16,28 18,86
CRR CO2 residue 26,18 14,00 18,96
ARD Air dust 26,83 12,45 15,95
ARL Air lost 36,23 19,66 24,31
ARR Air residue 37,02 19,27 22,83
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Figure 32 – Reactivity model Hotelling’s T2 

 

Figure 33 – Reactivity model DModX 

A score plot of the first two latent variables is shown in Figure 34. The color code as well 

as the numbers 1-5 represent the same raw material blends as for the physical property 

model (see Table 4). Once again, it is possible to observe the impact of raw material 

variations due to supplier change. 
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Figure 34 – Reactivity model score plot (LV1-LV2) 

The correlation between the variables can be interpreted using the loading plots for LV1 

and LV2 shown in Figure 35. In this figure, it is possible to observe the relationship 

between the reactivity variables and the raw material properties and process parameters. 

Only the variables and their labels for those with a VIP > 1 are displayed. First, the residues 

are inversely correlated with the lost and dust variables. This is expected since the 

combination of carbon lost and dust is equal to the initial sample weight minus the residue. 

One interesting relationship is that air reactivity and CO2 reactivity seems inversely 

correlated in the first component, but not in the second component. The air reactivity 

residue is positively correlated with calcium, coke apparent density and pitch QI and 

inversely correlated with vanadium, outside temperature, mixing energy and final baking 

temperature (i.e. correlated to pit position). The CO2 reactivity residue is correlated with 

butts impurities (sodium content, sodium to calcium ratio, and vanadium), Pitch β fraction, 

pitch softening point, fines % and sulfur and is inversely correlated with pitch %, pitch QI, 

MX2 mixing energy and coke apparent density. Coke impurities, especially vanadium 

sulfur and the Ca/Na ratio seem to have an impact on both reactivities. Air residue (ARR) is 

strongly correlated to anode position in the oven, thus it is correlated to final baking 

Raw material 
blend Coke 1 Coke 2 Coke 3 Pitch

1 A B C 1
2 A B D 1
3 A B D 2
4 C D - 2
5 C E - 2
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temperature. This could be the result of the desulfurization of the anode binder that occurs 

at higher temperature. There is a strong correlation between the air dust and air lost and the 

outside temperature. It could be due to seasonal temperature variations or simply that coke 

changes occur with season changes creating a fortuitous correlation with outside 

temperature. 

 

Figure 35 – Loadings of the first two LVs for the reactivity model showing variables 
having a VIP greater than 1.0 
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The 15 most influential variables (highest VIPs) for the reactivity model are listed in Table 

18. A list of all VIP for this model is available in Table 28 in Appendix B. When compared 

to the VIPs of the physical model, more process variable have a greater influence on the 

model (i.e. have a VIP > 1). Pit position is the most important variable for prediction and as 

can be seen from the loading plot, it has a major influence on air reactivity. Binder 

impurities from coke and butts are also important contributors. Almost all of the pitch 

variables have a VIP > 1 and finally, the mixing operating conditions appear to have an 

impact on anode reactivity. 

Table 18 – VIP for reactivity model 

 

The prediction for all six reactivity variables is presented in Figure 36. Once again, it is 

possible to observe that the low frequency variations are captured by the model. The total 

variance explained is low for each of the variables for this model, but it can give an 

indication of major deviations. In an attempt to improve the quality of the predictions, two 

separate models for CO2 residue and air residue were computed. The statistics for these 

models are presented in Table 19. 

Rank X variable ID VIP Process
1 Pit position 3,060 Baking
2 Butts V 1,797 Raw material (butts)
3 Coke 28/48 1,605 Raw material (coke)
4 Pitch B/QI 1,578 Raw material (pitch)
5 Coke V 1,544 Raw material (coke)
6 Pitch QI 1,523 Raw material (pitch)
7 Pitch Beta 1,511 Raw material (pitch)
8 Pitch SP 1,509 Raw material (pitch)
9 VC bellows 1,499 Paste plant
10 MX2 KW mea 1,491 Paste plant
11 Pitch ash 1,449 Raw material (pitch)
12 MX2 dump g 1,415 Paste plant
13 Butts S 1,400 Raw material (butts)
14 Pitch % 1,378 Paste plant
15 Butts Na/C 1,347 Raw material (butts)
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Figure 36 – Comparison of measured and predicted values (validation set) for: a) CRD, b) 
CRL, c) CRR, d) ARD, e) ARL, f) ARR 
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Table 19 – Residue models statistics 

 

The variance explained for the CO2 reactivity model is low. The air reactivity model 

performance is more acceptable close to 50% of variance explained. The better 

performance can be explained by the fact that ARR and CRR are not influenced by the 

same variables (i.e. the latent variable space associated with each reactivity is different). 

The coefficient of correlation between air residue and CO2 residue is only -3,03%. When 

both the CO2 and air reactivity are grouped in the same model, it tries to maximize the 

covariance for both group of variable at the same time. When the variables are not 

correlated, better performances can be obtained by creating separate models for these 

variables. 

Figure 37 compares the R2 of the training set and the predictive ability of the different 

reactivity models. For the CO2 residue, the gain on explained variance is not significant and 

the overall model could be used for this variable. The air reactivity residue model is better 

than the overall model. For the ARR, the residue model explains 31% more variance than 

the overall model. This model should be used for ARR estimation from the raw material 

and process variables.  

Statistics CRR model ARR model
Number of training observations 260 259
Number of validation observations 165 163
Number of X variables 93 93
Number of Y variables 1 1
Number of latent variables 2 3
R2Xtrain (%) 21,4 26,3

R2Ytrain (%) 29,6 48,6

Q2Ytrain (%) 13,4 23,0

R2Yvalid (%) 18,4 29,7
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Figure 37 – Residue and overall reactivity models comparison 

Table 20 compares the ten most important VIP for each residue model. It is possible to 

observe that there are differences between the two models. CRR is strongly correlated with 

mixer energy and most pitch variables as well as vanadium and calcium. For the ARR, the 

pit position (i.e. baking) is the most important variable, followed by vanadium and sulfur. 

Pitch properties are also important, and the external temperature appears correlated to 

variance in air residue. The later correlation could be due to coincidence with raw material 

changes. 

Table 20 – Residue models VIP comparison 

 

Variable ID VIP Variable ID VIP
1 MX2 KW mean pan 1 2,033 Pit position 3,977
2 Pitch SP 1,824 Coke V 1,695
3 Butts V 1,767 Butts V 1,684
4 Pitch B/QI 1,692 Pitch ash 1,653
5 Butts S 1,666 Pitch B/QI 1,636
6 Pitch QI 1,665 Pitch QI 1,600
7 Pitch Beta 1,662 VC bellows P 1,599
8 VC bellows P 1,660 Pitch Beta 1,523
9 Pitch % 1,617 Coke S 1,512
10 Coke Ca 1,602 BF max ext T 1,430

ARR modelCRR model
Rank
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The ARR predictions for the overall and residue model are compared in Figure 38. It can be 

observed that there is more variability captured by the ARR residue model. The low 

frequency trends are still predicted, but more high frequency variations are also captured by 

this model. 

 

Figure 38 – ARR models prediction comparison: a) Overall model and b) ARR residue 
model 

 



 

Conclusion 
The manufacturing of prebaked anode for primary aluminum production is a complex 

multi-step and multivariate process affected by many sources of variations: raw material 

variability, paste processing and baking operating conditions. The ultimate goal is to 

manufacture anodes that perform well in the reduction cells, with low resistivity and long 

life to maximize metal production and minimize power consumption. 

The main objective of this thesis was to investigate the different sources of anode quality 

variability and to improve quality control of the baked anode by predicting its properties. 

These properties are only available for the few anodes sampled each week. The prediction 

of anode properties could give an estimation of the quality for every anode produced. In 

regards of the industrial and multivariate nature of the data, a multivariate regression 

method is used to model the process. Due to anode core laboratory analysis limitations, two 

different classes of model are built: the physical properties and the reactivity properties. 

Different models are investigated for each of these two model class. Raw material 

properties and process operation condition variations are studied according to anode quality 

variation. Anode quality is assumed to be defined by its core sample properties. 

The first step of the project was to extract and synchronize all the data, and then PLS 

models were computed. The first model is the physical property model. The variables 

included are (in model performance order) : LC, green apparent density, baked weight, 

green weight, electrical resistivity, baked real density, baked apparent density, compressive 

strength, Young’s modulus and thermal conductivity. The variance explained for these 

variables ranges from 27% to 68% of fit on the training data and 21% to 66% fit on the 

validation data. These are good results except for compressive strength, Young’s modulus 

and thermal conductivity. It is demonstrated that high frequency variations are not captured 

by the model, but low frequency trends are well explained. 

A second model with lagged variables from the paste plant was computed to check for a 

possible lack-of-fit due to potentially missing dynamic elements in the model in addition to 

transport delays between and mean residence times within the process equipments. The 

performance of the latter model did not significantly improved and the weight of each of 
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the lagged variables was similar for each time lag. In normal operation, the dynamics of the 

process is probably slower than the eight minutes lag studied in this work.  

It was observed from the first physical property model that the fire move data do not have a 

significant weight in the model. However, it is known that the baking step has a strong 

influence on the anode properties. To try to capture some of the effects of baking 

temperature variations, profile data was extracted and added in a third physical property 

model. Temperature profile data were fitted using polynomials in order to reduce the 

amount of data to include in the model. Temperature profile polynomial coefficients and 

other statistics of the curves were used as new X variables in addition to the other raw 

material and process variables. This model did not significantly improve the model 

performance either. 

The second set of models computed is related to reactivity properties. The CO2 and air 

oxidation are major contributors to carbon overconsumption and they need to be 

minimized. The dust, lost and residue of both gas reactivities were used all together as the 

Y variables in the first modelling attempt (i.e. overall model). The variance explained 

ranged from 20% to 37% for the validation set (14% to 24% for the prediction set) 

depending on the Y-variables. The results for this model were worse than the results for 

physical properties. The impurities are well measured in the raw materials, but not the 

microstructure of the coke and its mechanical properties. This could be an important source 

of variability that is not measured. Although the explained variance for reactivites was 

lower, the low frequency trends were again captured by the models. High frequency 

variations for reactivities seem broader than for physical properties. In an attempt to 

improve residue predictions, two models were built for CO2 and air reactivity separately. 

The CO2 residue model has an explained variance of 30% (18% in validation). It is only a 

13% improvement to the overall model. The air residue model explains 49% (30% in 

validation) of the variance of that property. This is a 31% improvement to the overall 

model. The two variables are modeled separately because they are almost independent 

(correlation coefficient of -3%). The VIP shows that they are not driven by the same 

combinations of variables. Both are influenced by catalytic impurities, but air residue is 

more influence by baking variations and CO2 residue is more influence by mixing energy. 
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In conclusion, the major sources of variability are coming from the raw materials. Few 

process conditions have been changed during this analysis. This could be a reason why the 

baking process data do not have a significant impact on the models. Overall, a significant 

amount of variance is captured by the models. Augmenting the set of raw material 

properties, improving the quality of these data, and introducing variations in the most 

important process manipulated variables could improve the model performance, both in 

terms of interpretability and quality of predictions. These predictions of anode properties 

should be used for implementing early corrective actions on process manipulated variables 

in order to attenuate the impact of raw material changes. Hence, the models developed in 

this thesis enable the implementation of monitoring and feedback/feedforward quality 

control schemes at the carbon plant. 

Alcoa Deschambault is a modern smelter with a modern anode plant. Data collection and 

storage is up to date compared to other smelters in the industry. Despite this ability, this 

work as pointed out some missing information from the raw material and process. A 

considerable amount of variability is unexplained and some additional data and 

modifications to data collection methods could improve this situation: 

• Coke properties measured on few sample and from rail cars. This could be 

measured at a higher frequency and from the bottom of the silos. Also more 

information, in addition to impurities and apparent density are important. 

Microstructure, shape and mechanical properties could improve the models. 

• Butts properties consist only in chemical compositions. Some physical properties 

like density and hardness could contribute to the models. 

• More information on the fines like the Blaine number could help measured the dust 

fineness effects on the anode quality. 

• Being able to perform some design of experiments on the paste plant process 

operating conditions could help capture some variability from the process, and 

assess potential feedback/feedforward control schemes for reducing variability 
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• More work should be done on the baking profile, important information are 

probably hidden in them. 

The next step in this analysis could be the development of online sensors for coke 

properties and paste properties based on microscopy or image analysis. Also the models 

could be trained on a selection of good anodes and bad anodes to help map the raw material 

and process condition combinations that led to good anode to see if it is possible to build an 

optimal latent process space and be able to detect when the process deviates from this latent 

space. 
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Appendix A Models variable lists 
The appendix includes lists of all variable included in each of the model discussed. 

Table 21 – X variables for the physical transport delay model 

 

# X variable ID # X variable ID # X variable ID
1 Coke real dens 33 Inter. (tph) 65 Inter Rt50+Rt100
2 Coke Na 34 Butts (tph) 66 Fines Pt200
3 Coke Ca 35 Pitch (tph) 67 Agg Rt3/8
4 Coke S 36 Green recyc (tph) 68 Agg Rt4@Rt30
5 Coke V 37 Dry agg (tph) 69 Agg Rt50+Rt100
6 Coke 28/48 app dens 38 Paste (tph) 70 Agg Rt200+Pt200
7 Coke Fe 39 Coarse % 71 Agg Pt200
8 Coke Si 40 Fines % 72 Anode type (dim)(20)
9 Coke Ni 41 Inter. % 73 Anode type (dim)(23)

10 Coke ash 42 Butts % 74 Anode type (dim)(26)
11 Pitch SP 43 Pitch % 75 Green anode height
12 Pitch TS 44 Green recyc % 76 VC bellows P
13 Pitch Beta 45 Fines rot valve speed 77 PP mean ext T
14 Pitch QI 46 Agg pre-heater T 78 Oven
15 Pitch B/QI 47 Agg pre-heater_1 current 79 Fire
16 Pitch CV 48 Agg pre-heater_2 current 80 Pit position
17 Pitch ash 49 MX1 KW mean 81 Fire cycle T
18 Pitch S 50 MX1 KW max 82 BF pit starting T
19 Pitch dist 51 MX1 KW min 83 BB1 pit max T pos A
20 Butts Al 52 MX1 therm oil T 84 BB2 pit max T pos A
21 Butts Ca 53 MX1 P 85 BB3 pit max T pos A
22 Butts %F 54 MX1 current 86 BB3 pit max T pos B
23 Butts ash 55 Paste T between MX 87 BB1 flue 3 max T
24 Butts Fe 56 MX2 KW mean pan 1 88 BB3 flue 3 max T
25 Butts Ni 57 MX2 KW mean pan 2 89 BB3 flue 3 T set point
26 Butts Si 58 MX2 KW mean rotor 90 BF mean ext T
27 Butts Na 59 MX2 paste weight 91 BF min ext T
28 Butts S 60 MX2 dump gate pos 92 BF max ext T
29 Butts V 61 Paste T after MX2 93 BF ext T var
30 Butts Na/Ca 62 Butts Rt3/8+Rt4 94 Core state(1)
31 Coarse (tph) 63 Coarse Rt4 95 Core state(2)
32 Fines (tph) 64 Coarse Rt8 96 Core state(3)
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Table 22 – X variables for the physical with lags model 
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Table 23 – X variables for the physical model with baking profile 

 

# X variable ID # X variable ID # X variable ID # X variable ID # X variable ID
1 Coke real dens 36 Green recyc (tph) 71 Agg Pt200 106 BB2 A T 2 141 BB2 flue T 2
2 Coke Na 37 Dry agg (tph) 72 Anode type (dim)(20) 107 BB2 A T R2 142 BB2 flue T R2
3 Coke Ca 38 Paste (tph) 73 Anode type (dim)(23) 108 BB2 A T min 143 BB2 flue T min
4 Coke S 39 Coarse % 74 Anode type (dim)(26) 109 BB2 A T max 144 BB2 flue T max
5 Coke V 40 Fines % 75 Green anode height 110 BB2 A T mean 145 BB2 flue T mean
6 Coke 28/48 app dens 41 Inter. % 76 VC bellows P 111 BB3 A T 0 146 BB3 flue T 0
7 Coke Fe 42 Butts % 77 PP mean ext T 112 BB3 A T 1 147 BB3 flue T 1
8 Coke Si 43 Pitch % 78 Oven 113 BB3 A T 2 148 BB3 flue T 2
9 Coke Ni 44 Green recyc % 79 Fire 114 BB3 A T R2 149 BB3 flue T R2

10 Coke ash 45 Fines rot valve speed 80 Pit position 115 BB3 A T min 150 BB3 flue T min
11 Pitch SP 46 Agg pre-heater T 81 Fire cycle T 116 BB3 A T max 151 BB3 flue T max
12 Pitch TS 47 Agg pre-heater_1 current 82 BF pit starting T 117 BB3 A T mean 152 BB3 flue T mean
13 Pitch Beta 48 Agg pre-heater_2 current 83 BB1 pit max T pos A 118 BB3 B T 0 153 UPB P 0
14 Pitch QI 49 MX1 KW mean 84 BB2 pit max T pos A 119 BB3 B T 1 154 UPB P 1
15 Pitch B/QI 50 MX1 KW max 85 BB3 pit max T pos A 120 BB3 B T 2 155 UPB P R2
16 Pitch CV 51 MX1 KW min 86 BB3 pit max T pos B 121 BB3 B T R2 156 UPB P min
17 Pitch ash 52 MX1 therm oil T 87 BB1 flue 3 max T 122 BB3 B T min 157 UPB P max
18 Pitch S 53 MX1 P 88 BB3 flue 3 max T 123 BB3 B T max 158 UPB P mean
19 Pitch dist 54 MX1 current 89 BB3 flue 3 T set point 124 BB3 B T mean 159 UPB P var
20 Butts Al 55 Paste T between MX 90 BF mean ext T 125 UPB flue T 0
21 Butts Ca 56 MX2 KW mean pan 1 91 BF min ext T 126 UPB flue T 1
22 Butts %F 57 MX2 KW mean pan 2 92 BF max ext T 127 UPB flue T 2
23 Butts ash 58 MX2 KW mean rotor 93 BF ext T var 128 UPB flue T R2
24 Butts Fe 59 MX2 paste weight 94 Core state(1) 129 UPB flue T min
25 Butts Ni 60 MX2 dump gate pos 95 Core state(2) 130 UPB flue T max
26 Butts Si 61 Paste T after MX2 96 Core state(3) 131 UPB flue T mean
27 Butts Na 62 Butts Rt3/8+Rt4 97 BB1 A T 0 132 BB1 flue T 0
28 Butts S 63 Coarse Rt4 98 BB1 A T 1 133 BB1 flue T 1
29 Butts V 64 Coarse Rt8 99 BB1 A T 2 134 BB1 flue T 2
30 Butts Na/Ca 65 Inter Rt50+Rt100 100 BB1 A T R2 135 BB1 flue T R2
31 Coarse (tph) 66 Fines Pt200 101 BB1 A T min 136 BB1 flue T min
32 Fines (tph) 67 Agg Rt3/8 102 BB1 A T max 137 BB1 flue T max
33 Inter. (tph) 68 Agg Rt4@Rt30 103 BB1 A T mean 138 BB1 flue T mean
34 Butts (tph) 69 Agg Rt50+Rt100 104 BB2 A T 0 139 BB2 flue T 0
35 Pitch (tph) 70 Agg Rt200+Pt200 105 BB2 A T 1 140 BB2 flue T 1
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Table 24 – Y variables for all the physical property models 

 

Y variable ID
GAD Green anode dens

Green weight
Baked weight (mean)

Thermal cond
App dens
Real dens

Comp strengh
L c

Young's mod
Elect resis
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Table 25 – X variables for the reactivity models 

 

# X variable ID # X variable ID # X variable ID
1 Coke real dens 32 Fines (tph) 63 Coarse Rt4
2 Coke Na 33 Inter. (tph) 64 Coarse Rt8
3 Coke Ca 34 Butts (tph) 65 Inter Rt50+Rt100
4 Coke S 35 Pitch (tph) 66 Fines Pt200
5 Coke V 36 Green recyc (tph) 67 Agg Rt3/8
6 Coke 28/48 app dens 37 Dry agg (tph) 68 Agg Rt4@Rt30
7 Coke Fe 38 Paste (tph) 69 Agg Rt50+Rt100
8 Coke Si 39 Coarse % 70 Agg Rt200+Pt200
9 Coke Ni 40 Fines % 71 Agg Pt200

10 Coke ash 41 Inter. % 72 Anode type (dim)(20)
11 Pitch SP 42 Butts % 73 Anode type (dim)(23)
12 Pitch TS 43 Pitch % 74 Anode type (dim)(26)
13 Pitch Beta 44 Green recyc % 75 Green anode height
14 Pitch QI 45 Fines rot valve speed 76 VC bellows P
15 Pitch B/QI 46 Agg pre-heater T 77 PP mean ext T
16 Pitch CV 47 Agg pre-heater_1 current 78 Oven
17 Pitch ash 48 Agg pre-heater_2 current 79 Fire
18 Pitch S 49 MX1 KW mean 80 Pit position
19 Pitch dist 50 MX1 KW max 81 Fire cycle T
20 Butts Al 51 MX1 KW min 82 BF pit starting T
21 Butts Ca 52 MX1 therm oil T 83 BB1 pit max T pos A
22 Butts %F 53 MX1 P 84 BB2 pit max T pos A
23 Butts ash 54 MX1 current 85 BB3 pit max T pos A
24 Butts Fe 55 Paste T between MX 86 BB3 pit max T pos B
25 Butts Ni 56 MX2 KW mean pan 1 87 BB1 flue 3 max T
26 Butts Si 57 MX2 KW mean pan 2 88 BB3 flue 3 max T
27 Butts Na 58 MX2 KW mean rotor 89 BB3 flue 3 T set point
28 Butts S 59 MX2 paste weight 90 BF mean ext T
29 Butts V 60 MX2 dump gate pos 91 BF min ext T
30 Butts Na/Ca 61 Paste T after MX2 92 BF max ext T
31 Coarse (tph) 62 Butts Rt3/8+Rt4 93 Bfext T var
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Table 26 – Y variables for the reactivity models 

 

Overall model         
Y variable ID

Air residue model           
Y variable ID

CO2 residue model           
Y variable ID

CRD CO2 dust ARR Air residue CRR CO2 residue
CRL CO2 lost

CRR CO2 residue
ARD Air dust
ARL Air lost

ARR Air residue
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Appendix B Models VIP list 
Table 27 – VIP for the physical transport delay model 

 

Variable ID VIP Variable ID VIP Variable ID VIP Variable ID VIP
Pit position 2,850 Inter. % 0,982 Butts Al 0,835 MX1 current 0,404

Green anode height 2,291 MX2 KW mean pan 2 0,978 Butts Na 0,819 Oven 0,397
Butts V 1,544 Green recyc % 0,968 BF pit starting T 0,818 Fire 0,233

VC bellows P 1,470 Butts Ni 0,967 Butts Ca 0,807
Pitch ash 1,456 Coke Si 0,965 Inter Rt50+Rt100 0,796
Coke V 1,425 Butts (tph) 0,962 Fire cycle T 0,759
Pitch QI 1,355 Core state(2) 0,962 Coke Ni 0,759

Anode type (dim)(20) 1,313 Coke ash 0,953 BF ext T var 0,754
Pitch B/QI 1,312 MX2 KW mean pan 1 0,944 MX1 KW max 0,739

Coke 28/48 app dens 1,273 Coarse Rt4 0,944 Butts Rt3/8+Rt4 0,727
BF max ext T 1,239 Core state(1) 0,944 BB1 pit max T pos A 0,699

Butts S 1,239 Coke Ca 0,942 Paste T after MX2 0,690
Pitch Beta 1,215 Butts % 0,940 Agg Rt3/8 0,658

BF mean ext T 1,214 Green recyc (tph) 0,938 BB2 pit max T pos A 0,655
MX1 P 1,197 Coarse (tph) 0,937 Pitch dist 0,645

MX2 dump gate pos 1,173 Agg Rt4@Rt30 0,934 MX2 KW mean rotor 0,638
Pitch % 1,173 Agg Rt50+Rt100 0,920 Butts ash 0,637

BF min ext T 1,168 Paste (tph) 0,902 Coarse Rt8 0,623
BB3 pit max T pos B 1,166 Coarse % 0,900 Agg Rt200+Pt200 0,621

Pitch (tph) 1,153 Fines rot valve speed 0,898 Fines Pt200 0,617
Pitch CV 1,137 Coke Na 0,895 BB3 pit max T pos A 0,593
Pitch SP 1,129 MX2 paste weight 0,895 Agg pre-heater_1 current 0,568
Coke S 1,126 Butts %F 0,894 Butts Si 0,558
Coke Fe 1,113 Fines % 0,888 Agg Pt200 0,533

MX1 KW min 1,102 Inter. (tph) 0,881 MX1 therm oil T 0,511
Anode type (dim)(26) 1,081 Fines (tph) 0,879 BB3 flue 3 max T 0,498
Anode type (dim)(23) 1,063 Butts Fe 0,879 Core state(3) 0,495

PP mean ext T 1,057 Butts Na/Ca 0,873 BB1 flue 3 max T 0,488
Dry agg (tph) 1,055 Agg pre-heater_2 current 0,861 MX1 KW mean 0,460

Pitch TS 1,026 Paste T between MX 0,851 Pitch S 0,454
Coke real dens 1,012 Agg pre-heater T 0,848 BB3 flue 3 T set point 0,452
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Table 28 – VIP for the overall reactivity model 

 

Variable ID VIP Variable ID VIP Variable ID VIP
Pit position 3,060 PP mean ext T 1,000 Coke Na 0,623

Butts V 1,797 Paste T between MX 0,982 BB3 flue 3 max T 0,621
Coke 28/48 app dens 1,605 BF pit starting T 0,977 Coke ash 0,618

Pitch B/QI 1,578 Inter Rt50+Rt100 0,974 Butts Fe 0,601
Coke V 1,544 Inter. (tph) 0,957 BB2 pit max T pos A 0,601
Pitch QI 1,523 Butts Si 0,953 Paste T after MX2 0,596

Pitch Beta 1,511 Fines rot valve speed 0,939 Dry agg (tph) 0,593
Pitch SP 1,509 Anode type (dim)(23) 0,921 Fines (tph) 0,592

VC bellows P 1,499 Butts Al 0,916 Butts ash 0,591
MX2 KW mean pan 1 1,491 MX2 paste weight 0,912 BB3 flue 3 T set point 0,587

Pitch ash 1,449 Butts %F 0,902 Green recyc (tph) 0,580
MX2 dump gate pos 1,415 Coke real dens 0,883 Fire cycle T 0,560

Butts S 1,400 Inter. % 0,881 Agg pre-heater_1 current 0,548
Pitch % 1,378 Agg pre-heater_2 current 0,879 Green recyc % 0,530

Butts Na/Ca 1,347 BF min ext T 0,872 Agg Rt3/8 0,524
Pitch (tph) 1,344 BB3 pit max T pos B 0,861 Oven 0,485

Coke S 1,330 Coke Si 0,843 Agg Pt200 0,428
MX1 P 1,298 Paste (tph) 0,842 Fines Pt200 0,426

Coke Fe 1,270 MX1 current 0,818 Coarse % 0,422
Anode type (dim)(26) 1,219 Pitch S 0,794 BB1 flue 3 max T 0,401
Anode type (dim)(20) 1,217 MX1 KW min 0,774 Butts (tph) 0,385

MX1 KW max 1,171 Butts Rt3/8+Rt4 0,752 Butts % 0,384
Coke Ca 1,156 Butts Ni 0,746 Agg Rt50+Rt100 0,321

Bfext T var 1,131 Butts Ca 0,717 Coarse Rt4 0,287
BF max ext T 1,116 BB3 pit max T pos A 0,702 Coarse (tph) 0,271
BF mean ext T 1,100 Pitch TS 0,698 Pitch dist 0,263

Pitch CV 1,079 BB1 pit max T pos A 0,697 Fire 0,192
Butts Na 1,045 MX2 KW mean pan 2 0,670 Green anode height 0,173
Coke Ni 1,040 Coarse Rt8 0,666 MX1 KW mean 0,160

MX1 therm oil T 1,037 MX2 KW mean rotor 0,660
Agg pre-heater T 1,013 Agg Rt4@Rt30 0,643

Fines % 1,011 Agg Rt200+Pt200 0,632
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