4 research outputs found

    Inmunoglobulina endovenosa en enfermedades neuromusculares. Guía para su utilización

    Get PDF
    La Inmunoglobulina Endovenosa (IgEV) ha mostrado eficacia en varias enfermedades inmunomediadas del Sistema Nervioso Periférico. Los mecanismos postulados son: inhibir la producción de autoanticuerpos, neutralizarlos y aumentar su catabolismo, inducir bloqueo sobre monocitos y células T, interferir con el Complemento e interactuar con diversas citoquinas. La IgEV es elaborada a partir de la purificación y concentración del plasma de individuos sanos; aplicando diversas metodologías, como tratamiento a pH ácido con trazas de pepsina, cromatografía de intercambio iónico y precipitación con polietilenglicol, para eliminar los polímeros de alto peso molecular. Las entidades en las cuales se evaluó la IgEV más frecuentemente son: Neuropatías inmunomediadas Agudas (Síndrome Guillain-Barré y sus variedades: Síndrome de Miller-Fisher, Neuropatía Axonal Aguda Motora y Neuropatía Axonal Aguda Motora y Sensitiva) y Crónicas (Polineuropatía Inflamatoria Desmielinizante Crónica, Neuropatía Multifocal Motora, Neuropatía Desmielinizante Multifocal Sensitiva y Motora, Neuropatías Asociadas a Paraproteinemia y Neuropatías Atáxicas Crónicas Predominantemente Sensitivas), Enfermedades de la Unión Neuromuscular (Miastenia Gravis y Síndrome de Eaton-Lambert), Miopatías Inflamatorias (Dermatomiositis, Polimiositis y Miositis por Cuerpos de Inclusión) Ganglionopatías Sensitivas y Síndrome de Persona Rígida. La IgEV es fácilmente administrable y generalmente bien tolerada. Los efectos adversos raramente son serios, frecuentemente escalofríos, náuseas, cefalea, mialgias, fatiga y fiebre entre otros, controlables con tratamiento sintomático, y raramente falla renal, infartos miocárdicos, accidentes cerebrovasculares, reacción anafiláctica y meningitis aséptica. La IgEV se contraindica en hipersensibilidad a Inmunoglobulinas y en pacientes con déficit congénito de IgA. La dosis es de 2 g/kg, Clásicamente se distribuye a lo largo de 2-5 días con velocidad de infusión de 40-80 ml/hora.Fil: Figueredo, Alejandra. Sociedad Neurológica Argentina; ArgentinaFil: Altamirano, Lorena. Sociedad Neurológica Argentina; ArgentinaFil: Amores, Mirtha Graciela. Sociedad Neurológica Argentina; ArgentinaFil: Bertotti, Alicia Cristina. Sociedad Neurológica Argentina; ArgentinaFil: Cueto, Alicia. Sociedad Neurológica Argentina; ArgentinaFil: Díaz Livadiotis, Guillermo. Sociedad Neurológica Argentina; ArgentinaFil: Di Egidio, Mariana. Sociedad Neurológica Argentina; ArgentinaFil: Doumic, Javier. Sociedad Neurológica Argentina; ArgentinaFil: Dubrovsky, Alberto. Sociedad Neurológica Argentina; ArgentinaFil: Fulgenzi, Ernesto. Sociedad Neurológica Argentina; ArgentinaFil: Lautre, Andrea. Sociedad Neurológica Argentina; ArgentinaFil: Losavio, Adriana Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Médicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Médicas; ArgentinaFil: Marchesone, Cintia. Sociedad Neurológica Argentina; ArgentinaFil: Martinez Alvarez, Mariana. Sociedad Neurológica Argentina; ArgentinaFil: Mazia, Claudio Gabriel. Sociedad Neurológica Argentina; ArgentinaFil: Melano, Raúl. Sociedad Neurológica Argentina; ArgentinaFil: Orellano, Anabel. Sociedad Neurológica Argentina; ArgentinaFil: Pagano, Miguel Angel. Sociedad Neurológica Argentina; ArgentinaFil: Pardal, Ana Maria. Sociedad Neurológica Argentina; ArgentinaFil: Pirra, Laura. Sociedad Neurológica Argentina; ArgentinaFil: Politei, Juan. Sociedad Neurológica Argentina; ArgentinaFil: Reisin, Ricardo. Sociedad Neurológica Argentina; ArgentinaFil: Rey, Roberto. Sociedad Neurológica Argentina; ArgentinaFil: Rodriguez, Gabriel. Sociedad Neurológica Argentina; ArgentinaFil: Rugiero, Marcelo. Sociedad Neurológica Argentina; ArgentinaFil: Yorio, Alberto. Sociedad Neurológica Argentina; Argentin

    X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients

    Get PDF
    Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern

    X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients

    Get PDF
    WOS: 000481590200024PubMed ID: 31427717Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern.Spanish Ministry of Health (Instituto de Salud Carlos III/FEDER) [PI15/01159]; Crowdfunding program PRECIPITA, from the Spanish Ministry of Health (Fundacion Espanola para la Ciencia y la Tecnologia); Catalan Association for Rett Syndrome; Fondobiorett; Mi Princesa RettWe thank all patients and their families who contributed to this study. The work was supported by grants from the Spanish Ministry of Health (Instituto de Salud Carlos III/FEDER, PI15/01159); Crowdfunding program PRECIPITA, from the Spanish Ministry of Health (Fundacion Espanola para la Ciencia y la Tecnologia); the Catalan Association for Rett Syndrome; Fondobiorett and Mi Princesa Rett

    Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study

    No full text
    © 2020 Elsevier Ltd. All rights reserved.Background: Hereditary transthyretin-mediated amyloidosis is a rare, inherited, progressive disease caused by mutations in the transthyretin (TTR) gene. We assessed the safety and efficacy of long-term treatment with patisiran, an RNA interference therapeutic that inhibits TTR production, in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Methods: This multicentre, open-label extension (OLE) trial enrolled patients at 43 hospitals or clinical centres in 19 countries as of Sept 24, 2018. Patients were eligible if they had completed the phase 3 APOLLO or phase 2 OLE parent studies and tolerated the study drug. Eligible patients from APOLLO (patisiran and placebo groups) and the phase 2 OLE (patisiran group) studies enrolled in this global OLE trial and received patisiran 0·3 mg/kg by intravenous infusion every 3 weeks with plans to continue to do so for up to 5 years. Efficacy assessments included measures of polyneuropathy (modified Neuropathy Impairment Score +7 [mNIS+7]), quality of life, autonomic symptoms, nutritional status, disability, ambulation status, motor function, and cardiac stress, with analysis by study groups (APOLLO-placebo, APOLLO-patisiran, phase 2 OLE patisiran) based on allocation in the parent trial. The global OLE is ongoing with no new enrolment, and current findings are based on the interim analysis of the patients who had completed 12-month efficacy assessments as of the data cutoff. Safety analyses included all patients who received one or more dose of patisiran up to the data cutoff. This study is registered with ClinicalTrials.gov, NCT02510261. Findings: Between July 13, 2015, and Aug 21, 2017, of 212 eligible patients, 211 were enrolled: 137 patients from the APOLLO-patisiran group, 49 from the APOLLO-placebo group, and 25 from the phase 2 OLE patisiran group. At the data cutoff on Sept 24, 2018, 126 (92%) of 137 patients from the APOLLO-patisiran group, 38 (78%) of 49 from the APOLLO-placebo group, and 25 (100%) of 25 from the phase 2 OLE patisiran group had completed 12-month assessments. At 12 months, improvements in mNIS+7 with patisiran were sustained from parent study baseline with treatment in the global OLE (APOLLO-patisiran mean change -4·0, 95 % CI -7·7 to -0·3; phase 2 OLE patisiran -4·7, -11·9 to 2·4). Mean mNIS+7 score improved from global OLE enrolment in the APOLLO-placebo group (mean change from global OLE enrolment -1·4, 95% CI -6·2 to 3·5). Overall, 204 (97%) of 211 patients reported adverse events, 82 (39%) reported serious adverse events, and there were 23 (11%) deaths. Serious adverse events were more frequent in the APOLLO-placebo group (28 [57%] of 49) than in the APOLLO-patisiran (48 [35%] of 137) or phase 2 OLE patisiran (six [24%] of 25) groups. The most common treatment-related adverse event was mild or moderate infusion-related reactions. The frequency of deaths in the global OLE was higher in the APOLLO-placebo group (13 [27%] of 49), who had a higher disease burden than the APOLLO-patisiran (ten [7%] of 137) and phase 2 OLE patisiran (0 of 25) groups. Interpretation: In this interim 12-month analysis of the ongoing global OLE study, patisiran appeared to maintain efficacy with an acceptable safety profile in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. Continued long-term follow-up will be important for the overall assessment of safety and efficacy with patisiran.info:eu-repo/semantics/publishedVersio
    corecore