8 research outputs found

    Documentation of clinically relevant genomic biomarker allele frequencies in the next-generation FINDbase worldwide database

    Get PDF
    FINDbase (http://www.findbase.org) is a comprehensive data resource recording the prevalence of clinically relevant genomic variants in various populations worldwide, such as pathogenic variants underlying genetic disorders as well as pharmacogenomic biomarkers that can guide drug treatment. Here, we report significant new developments and technological advancements in the database architecture, leading to a completely revamped database structure, querying interface, accompanied with substantial extensions of data content and curation. In particular, the FINDbase upgrade further improves the user experience by introducing responsive features that support a wide variety of mobile and stationary devices, while enhancing computational runtime due to the use of a modern Javascript framework such as ReactJS. Data collection is significantly enriched, with the data records being divided in a Public and Private version, the latter being accessed on the basis of data contribution, according to the microattribution approach, while the front end was redesigned to support the new functionalities and querying tools. The abovementioned updates further enhance the impact of FINDbase, improve the overall user experience, facilitate further data sharing by microattribution, and strengthen the role of FINDbase as a key resource for personalized medicine applications and personalized public health

    Development of the PG

    No full text
    Pre-emptive pharmacogenetics (PGx) testing of a panel of germline genetic variants represents a new model for personalized medicine. Clinical impact of PGx testing is maximized when all variant alleles for which actionable clinical guidelines are available are included in the test panel. However, no such standardized panel has been presented to date, impeding adoption, exchange, and continuity of PGx testing. We, therefore, developed such a panel, hereafter called the PGx-Passport, based on the actionable Dutch Pharmacogenetics Working Group (DPWG) guidelines. Germline-variant alleles were systematically selected using predefined criteria regarding allele population frequencies, effect on protein functionality, and association with drug response. A PGx-Passport of 58 germline variant alleles, located within 14 genes (CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A5, DPYD, F5, HLA-A, HLA-B, NUDT15, SLCO1B1, TPMT, UGT1A1, and VKORC1) was composed. This PGx-Passport can be used in combination with the DPWG guidelines to optimize drug prescribing for 49 commonly prescribed drugs.Personalised Therapeutic

    Development of the PGx-Passport: A Panel of Actionable Germline Genetic Variants for Pre-Emptive Pharmacogenetic Testing

    No full text
    Pre-emptive pharmacogenetics (PGx) testing of a panel of germline genetic variants represents a new model for personalized medicine. Clinical impact of PGx testing is maximized when all variant alleles for which actionable clinical guidelines are available are included in the test panel. However, no such standardized panel has been presented to date, impeding adoption, exchange, and continuity of PGx testing. We, therefore, developed such a panel, hereafter called the PGx-Passport, based on the actionable Dutch Pharmacogenetics Working Group (DPWG) guidelines. Germline-variant alleles were systematically selected using predefined criteria regarding allele population frequencies, effect on protein functionality, and association with drug response. A PGx-Passport of 58 germline variant alleles, located within 14 genes (CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A5, DPYD, F5, HLA-A, HLA-B, NUDT15, SLCO1B1, TPMT, UGT1A1, and VKORC1) was composed. This PGx-Passport can be used in combination with the DPWG guidelines to optimize drug prescribing for 49 commonly prescribed drugs.Personalised Therapeutic

    Application of microphysiological systems to enhance safety assessment in drug discovery

    No full text
    Enhancing the early detection of new therapies that are likely to carry a safety liability in the context of the intended patient population would provide a major advance in drug discovery. Microphysiological systems (MPS) technology offers an opportunity to support enhanced preclinical to clinical translation through the generation of higher-quality preclinical physiological data. In this review, we highlight this technological opportunity by focusing on key target organs associated with drug safety and metabolism. By focusing on MPS models that have been developed for these organs, alongside other relevant in vitro models, we review the current state of the art and the challenges that still need to be overcome to ensure application of this technology in enhancing drug discovery

    Pharmacogenetic Allele Nomenclature

    No full text
    This article provides nomenclature recommendations developed by an international workgroup to increase transparency and standardization of pharmacogenetic (PGx) result reporting. Presently, sequence variants identified by PGx tests are described using different nomenclature systems. In addition, PGx analysis may detect different sets of variants for each gene, which can affect interpretation of results. This practice has caused confusion and may thereby impede the adoption of clinical PGx testing. Standardization is critical to move PGx forward

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press
    corecore