46 research outputs found

    SE-ENRICHMENT OF CARROT AND ONION VIA FOLIAR APPLICATION

    Get PDF
    The aim of this work was to study the selenium accumulation in carrot and onion plants using foliar application by sodium selenite and sodium selenate. Furthermore, we aimed at identifying the Se species biosynthesised by onion and carrot plants. The results were used to prepare for production of 77Se enriched plants for an ongoing human absorption study

    OrgTrace – No Difference in Levels of Bioactive Compounds found in Crops from Selected Organic and Conventional Cultivation Systems

    Get PDF
    The objective of the present study was to compare the content of selected bioactive compounds in organically and conventionally grown crops, and to evaluate if the ability of the crops to synthesize selected secondary metabolites was systematically affected by growth systems across different growth years as well as soil types. The results showed that contents of neither polyacetylenes and carotenoids in carrots, flavonoids in onions, nor phenolic acids in carrots and potatoes were significantly influenced by growth system. Thus it could not be concluded that the organically grown crops had higher contents of bioactive compounds than the conventionally grown. This indicates that giving preference to organic products because they contain more bioactive components is doubtfull. However, there are many other reasons for the consumer to choose organic food products, including: no pesticide residues in foods, animal welfare, and environmental protection

    Evaluation of a phosphate kinetics model in hemodialysis therapy-Assessment of the temporal robustness of model predictions

    Get PDF
    In-depth understanding of intra- and postdialytic phosphate kinetics is important to adjust treatment regimens in hemodialysis. We aimed to modify and validate a three-compartment phosphate kinetic model to individual patient data and assess the temporal robustness. Intradialytic phosphate samples were collected from the plasma and dialysate of 12 patients during two treatments (HD1 and HD2). 2-h postdialytic plasma samples were collected in four of the patients. First, the model was fitted to HD1 samples from each patient to estimate the mass transfer coefficients. Second, the best fitted model in each patient case was validated on HD2 samples. The best model fits were determined from the coefficient of determination (R2 ) values. When fitted to intradialytic samples only, the median (interquartile range) R2 values were 0.985 (0.959-0.997) and 0.992 (0.984-0.994) for HD1 and HD2, respectively. When fitted to both intra- and postdialytic samples, the results were 0.882 (0.838-0.929) and 0.963 (0.951-0.976) for HD1 and HD2, respectively. Eight patients demonstrated a higher R2 value for HD2 than for HD1. The model seems promising to predict individual plasma phosphate in hemodialysis patients. The results also show good temporal robustness of the model. Further modifications and validation on a larger sample are needed.</p

    Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis

    Get PDF
    Quantitative multi-elemental analysis by inductively coupled plasma (ICP) spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data. Results We have developed a micro-scaled microwave digestion procedure and optimized it for accurate elemental profiling of plant materials (1-20 mg dry weight). A commercially available 64-position rotor with 5 ml disposable glass vials, originally designed for microwave-based parallel organic synthesis, was used as a platform for the digestion. The novel micro-scaled method was successfully validated by the use of various certified reference materials (CRM) with matrices rich in starch, lipid or protein. When the micro-scaled digestion procedure was applied on single rice grains or small batches of Arabidopsis seeds (1 mg, corresponding to approximately 50 seeds), the obtained elemental profiles closely matched those obtained by conventional analysis using digestion in large volume vessels. Accumulated elemental contents derived from separate analyses of rice grain fractions (aleurone, embryo and endosperm) closely matched the total content obtained by analysis of the whole rice grain. Conclusion A high-throughput micro-scaled method has been developed which enables digestion of small quantities of plant samples for subsequent elemental profiling by ICP-spectrometry. The method constitutes a valuable tool for screening of mutants and transformants. In addition, the method facilitates studies of the distribution of essential trace elements between and within plant organs which is relevant for, e.g., breeding programmes aiming at improvement of the micronutrient density in edible plant parts. Compared to existing vial-in-vial systems, the new method developed here represents a significant methodological advancement in terms of higher capacity, reduced labour consumption, lower material costs, less contamination and, as a consequence, improved analytical accuracy following micro-scaled digestion of plant samples

    Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77Se

    Get PDF
    The aims were to bio-fortify onions by foliar application of selenium (Se) and to intrinsically label bioactive Se-metabolites in onion and carrot by enriched, stable77Se for use in human physiological studies. Onion bulbs and leaves were enriched in Se by repeated foliar spraying of 10 or 100 ÎĽg Se mL-1 solutions of sodium selenite (Se(IV)) or sodium selenate (Se(VI)). ICP-MS analysis of onion leaves and bulbs showed that the Se concentration was enhanced by up to a factor of approximately 50 and 200 in bulbs and leaves, respectively. HPLC-ICP-MS analysis of proteolytic plant extracts showed that foliar application of Se(IV) gave rise to bio-synthesis of a higher fraction of the desired organic Se species and was better tolerated by the plants than Se(VI). Based on these findings onions and carrots were bio-fortified by foliar application of a solution of 77Se(IV) that was enriched to 99,7 % as 77Se. The 77Se- labeled metabolites in onions were predominantly -glutamyl-77Se-selenomethyl-selenocysteine (-glu-Me77SeCys), 77Se-methylselenocysteine (Me77SeCys) and 77Se-selenomethionine (77SeMet). Furthermore, we report here for the first time the finding in carrots of the bioactive Me77SeCys, the identity of which was verified by HPLC-ESI-MS/MS

    Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions

    Get PDF
    Background and Aims Retranslocation of iron (Fe) from source tissues enhances plant tolerance to Fe deficiency. Previous work has shown that silicon (Si) can alleviate Fe deficiency by enhancing acquisition and root to shoot translocation of Fe. Here the role of Si in Fe mobilization in older leaves and the subsequent retranslocation of Fe to young leaves of cucumber (Cucumis sativus) plants growing under Fe-limiting conditions was investigated. Methods Iron (Fe-57 or naturally occurring isotopes) was measured in leaves at different positions on plants hydroponically growing with or without Si supply. In parallel, the concentration of the Fe chelator nicotianamine (NA) along with the expression of nicotianamine synthase (NAS) involved in its biosynthesis and the expression of yellow stripe-like (YSL) transcripts mediating Fe-NA transport were also determined. Key Results In plants not receiving Si, approximately half of the total Fe content remained in the oldest leaf. In contrast, Si-treated plants showed an almost even Fe distribution among leaves with four different developmental stages, thus providing evidence of enhanced Fe remobilization from source leaves. This Si-stimulated Fe export was paralleled by an increased NA accumulation and expression of the YSL1 transporter for phloem loading/unloading of the Fe-NA complex. Conclusions The results suggest that Si enhances remobilization of Fe from older to younger leaves by a more efficient NA-mediated Fe transport via the phloem. In addition, from this and previous work, a model is proposed of how Si acts to improve Fe homeostasis under Fe deficiency in cucumber

    Discrimination of conventional and organic white cabbage from a long-term field trial study using untargeted LC-MS-based metabolomics

    Get PDF
    The influence of organic and conventional farming practices on the content of single nutrients in plants is disputed in the scientific literature. Here, large-scale untargeted LC-MS-based metabolomics was used to compare the composition of white cabbage from organic and conventional agriculture, measuring 1,600 compounds. Cabbage was sampled in 2 years from one conventional and two organic farming systems in a rigidly controlled long-term field trial in Denmark. Using Orthogonal Projection to Latent Structures-Discriminant Analysis (OPLS-DA), we found that the production system leaves a significant (p = 0.013) imprint in the white cabbage metabolome that is retained between production years. We externally validated this finding by predicting the production system of samples from one year using a classification model built on samples from the other year, with a correct classification in 83% of cases. Thus, it was concluded that the investigated conventional and organic management practices have a systematic impact on the metabolome of white cabbage. This emphasizes the potential of untargeted metabolomics for authenticity testing of organic plant products

    Bio-fortification and isotopic labelling of Se metabolites in onions and carrots following foliar application of Se and 77Se

    No full text
    The aims were to bio-fortify onions by foliar application of selenium (Se) and to intrinsically label bioactive Se-metabolites in onion and carrot by enriched, stable77Se for use in human physiological studies. Onion bulbs and leaves were enriched in Se by repeated foliar spraying of 10 or 100 ÎĽg Se mL-1 solutions of sodium selenite (Se(IV)) or sodium selenate (Se(VI)). ICP-MS analysis of onion leaves and bulbs showed that the Se concentration was enhanced by up to a factor of approximately 50 and 200 in bulbs and leaves, respectively. HPLC-ICP-MS analysis of proteolytic plant extracts showed that foliar application of Se(IV) gave rise to bio-synthesis of a higher fraction of the desired organic Se species and was better tolerated by the plants than Se(VI). Based on these findings onions and carrots were bio-fortified by foliar application of a solution of 77Se(IV) that was enriched to 99,7 % as 77Se. The 77Se- labeled metabolites in onions were predominantly -glutamyl-77Se-selenomethyl-selenocysteine (-glu-Me77SeCys), 77Se-methylselenocysteine (Me77SeCys) and 77Se-selenomethionine (77SeMet). Furthermore, we report here for the first time the finding in carrots of the bioactive Me77SeCys, the identity of which was verified by HPLC-ESI-MS/MS
    corecore