3 research outputs found
Probing the near-horizon geometry of black rings
In many cases, the near-horizon geometry encodes sufficient information to
compute conserved charges of a gravitational solution, including thermodynamic
quantities. These charges are Noether charges associated to asymptotic
isometries that preserve appropriate boundary conditions at the future horizon.
For isolated, compact horizons these charges turn out to be integrable,
conserved and finite, and they have been studied in many examples of interest,
notably in 3+1 dimensions. In higher dimensions, where the variety of horizon
structures is more diverse, it is still possible to apply the same method,
although explicit examples have so far been limited to simple topologies. In
this paper, we demonstrate that such computations can also be applied to
higher-dimensional solutions with event horizons whose spacelike cross sections
exhibit non-trivial topology. We provide several explicit examples, with
particular focus on the 5-dimensional black ring.Comment: 16 page
Probing the near-horizon geometry of black rings
In many cases, the near-horizon geometry encodes sufficient information to compute conserved charges of a gravitational solution, including thermodynamic quantities. These charges are Noether charges associated to asymptotic isometries that preserve appropriate boundary conditions at the future horizon. For isolated, compact horizons these charges turn out to be integrable, conserved and finite, and they have been studied in many examples of interest, notably in 3+1 dimensions. In higher dimensions, where the variety of horizon structures is more diverse, it is still possible to apply the same method, although explicit examples have so far been limited to simple topologies. In this paper, we demonstrate that such computations can also be applied to higher-dimensional solutions with event horizons whose spacelike cross sections exhibit nontrivial topology. We provide several explicit examples, with particular focus on the 5-dimensional black ring.Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. University of New York; Estados UnidosFil: Laurnagaray, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Schmied, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin
Field response in the near-horizon limit of near-extremal five-dimensional black holes
We study the scalar probe in the near-horizon region of near-extremal five-dimensional black holes and the problem of reattaching the asymptotic region. We consider the example of a Myers-Perry black hole with two independent angular momenta, for which the problem can be solved analytically in terms of the Riemann P-symbols and the confluent Heun special function. By prescribing leaking boundary conditions similar to those considered in the context of Kerr/conformal field theory correspondence, we implement the attachment of the asymptotically flat region, matching the solutions in the near-horizon Myers-Perry geometry with those in the far region. This provides us with a set of explicit expressions for the field response in the background of five-dimensional stationary black holes near extremality, which enables us to highlight qualitative differences with the analogous problem in four dimensions.Fil: Giribet, Gaston Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. University of New York; Estados UnidosFil: Laurnagaray, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Malpartida Flores, Bryan Anthony. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Oliva, Julio. Universidad de Concepción; ChileFil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentin