5 research outputs found

    Nevirapine quantification in human plasma by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry. Application to bioequivalence study

    No full text
    A rapid, sensitive and specific method to quantify nevirapine in human plasma using dibenzepine as the internal standard (IS) was developed and validated. The method employed a liquid-liquid extraction. The analyte and the IS were chromatographed on a C-18 analytical column, (150 x 4.6 mm i.d. 4 mum) and analyzed by tandem mass spectrometry in the multiple reaction monitoring mode. The method had a chromatographic run time of 5.0 min and a linear calibration curve over the range 10-5000 ng ml(-1) (r(2) > 0.9970). The between-run precision, based on the relative standard deviation for replicate quality controls was 1.3% (30 ng ml(-1)), 2.8% (300 ng ml(-1)) and 3.6% (3000 ng ml(-1)). The between-run accuracy was 4.0, 7.0 and 6.2% for the above-mentioned concentrations, respectively. This method was employed in a bioequivalence study of two nevirapine tablet formulations (Nevirapina from Far-Manguinhos, Brazil, as a test formulation, and Viramune from Boehringer Ingelheim do Brasil Quimica e Farmaceutica, as a reference formulation) in 25 healthy volunteers of both sexes who received a single 200 mg dose of each formulation. The study was conducted using an open, randomized, two-period crossover design with a 3 week washout interval. The 90% confidence interval (CI) of the individual ratio geometric mean for Nevirapina/Viramune was 96.4-104.5% for AUC((0-last)), 91.4-105.1% for AUC((0-infinity)) and 95.3-111.6% for C-max (AUC = area under the curve; C-max = peak plasma concentration). Since both 90% CI for AUC((0-last)) and AUC((0-infinity)) and C-max were included in the 80-125% interval proposed by the US Food and Drug Administration, Nevirapina was considered bioequivalent to Viramune according to both the rate and extent of absorption. Copyright (C) 2002 John Wiley Sons, Ltd.37443444

    Bromazepam determination in human plasma by high-performance liquid chromatography coupled to tandem mass spectrometry: a highly sensitive and specific tool for bioequivalence studies

    No full text
    A rapid, sensitive and specific method to quantify bromazepam in human plasma using diazepam as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using diethyl ether-hexane (80:20, v/v). The extracts were analyzed by high-performance liquid chromatography (HPLC) coupled to electrospray tandem mass spectrometry (MS/MS). Chromatography was performed isocratically on a Genesis C-18 analytical column (100 x 2.1 mm i.d., film thickness 4 pm). The method had a chromatographic run time of 5.0 min and a linear calibration curve over the range 5.0-150 ng ml(-1) (r(2) > 0.9952). The limit of quantification was 5 ng ml(-1). This HPLC/MS/MS procedure was used to assess the bioequivalence of two bromazepam 6 mg tablet formulations (bromazepam from Medley SA Industria Farmaceutica as the test formulation and Lexotan from Produtos Roche Quimico e Farmaceutico SA as the reference formulation). A single 6 mg dose of each formulation was administered to 24 healthy volunteers (12 males and 12 females). The study was conducted using an open, randomized, two-period crossover design with a 3 week washout interval. Since the 90% CI for C-max, AUC(last), AUC(0-240 h) (linear) and AUC((0-infinity)) ratios were all inside the 80-125% interval proposed by the US Food and Drug Administration, it was concluded that the bromazepam formulation from Medley is bioequivalent to the Lexotan formulation for both the rate and the extent of absorption. Copyright (C) 2004 John Wiley Sons, Ltd.39216817

    Restoration of insulin secretion in pancreatic islets of protein-deficient rats by reduced expression of insulin receptor substrate (IRS)-1 and IRS-2

    No full text
    Autocrine and paracrine insulin signaling may participate in the fine control of insulin secretion. In the present study, tissue distribution and protein amounts of the insulin receptor and its major substrates, insulin receptor substrate (IRS)-1 and IRS-2, were evaluated in a model of impaired glucose-induced insulin secretion, the protein-deficient rat. Immunoblot and RT-PCR studies showed that the insulin receptor and IRS-2 expression are increased, whilst IRS-1 protein and mRNA contents are decreased in pancreatic islets of protein-deficient rats. lmmunohistochemical studies revealed that the insulin receptor and IRS-1 and -2 are present in the great majority of islet cells; however, the greatest staining was localized at the periphery, suggesting a co-localization with non-insulin-secreting cells. Exogenous insulin stimulation of isolated islets promoted higher insulin receptor and IRS-1 and -2 tyrosine phosphorylation in islets from protein-deficient rats, as compared with controls. Moreover, insulin-induced IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activity are increased in islets of protein-deficient rats. The reduction of IRS-1 and IRS-2 protein expression in islets isolated from protein-deficient rats by the use of antisense IRS-1 or IRS-2 phosphorthioate-modified oligonucleotides partially re- stored glucose-induced insulin secretion. Thus, the impairment of insulin cell signaling through members of the IRS family of proteins in isolated rat pancreatic islets improves glucose-induced insulin secretion. The present data reinforced the role of insulin paracrine and autocrine signaling in the control of its own secretion.1811253
    corecore