77 research outputs found
Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection
Chemotherapy and targeted therapies have significantly improved the prognosis of oncology patients. However, these antineoplastic treatments may also induce adverse cardiovascular effects, which may lead to acute or delayed onset of cardiac dysfunction. These common cardiovascular complications, commonly referred to as cardiotoxicity, not only may require the modification, suspension, or withdrawal of life-saving antineoplastic therapies, with the risk of reducing their efficacy, but can also strongly impact the quality of life and overall survival, regardless of the oncological prognosis. The onset of cardiotoxicity may depend on the class, dose, route, and duration of administration of anticancer drugs, as well as on individual risk factors. Importantly, the cardiotoxic side effects may be reversible, if cardiac function is restored upon discontinuation of the therapy, or irreversible, characterized by injury and loss of cardiac muscle cells. Subclinical myocardial dysfunction induced by anticancer therapies may also subsequently evolve in symptomatic congestive heart failure. Hence, there is an urgent need for cardioprotective therapies to reduce the clinical and subclinical cardiotoxicity onset and progression and to limit the acute or chronic manifestation of cardiac damages. In this review, we summarize the knowledge regarding the cellular and molecular mechanisms contributing to the onset of cardiotoxicity associated with common classes of chemotherapy and targeted therapy drugs. Furthermore, we describe and discuss current and potential strategies to cope with the cardiotoxic side effects as well as cardioprotective preventive approaches that may be useful to flank anticancer therapies
Estrogen Receptors and Melanoma: A Review
In the last three decades cutaneous melanoma has been widely investigated as a steroid hormone-sensitive cancer. Following this hypothesis, many epidemiological studies have investigated the relationship between estrogens and melanoma. No evidence to date has supported this association due to the great complexity of genetic, external and environmental factors underlying the development of this cancer. Molecular mechanisms through which estrogen and their receptor exert a role in melanoma genesis are still under investigation with new studies increasingly focusing on the discovery of new molecular targets for therapeutic treatments
EGFR positive feedback loops and βeta Catenin driven miR-17-92 cluster converge to regulate EMT and drug resistance
Epidermal growth factor receptor (EGFR)-targeted cancer drug represents a mile- stone in oncology. Nevertheless the responses are invariably limited by the emer- gence of secondary drug-resistance (Misale, Di Nicolantonio et al. 2014). We found that drug-treated ‘‘EGFR-addicted’’ cancer cells engage a positive feedback loop lead- ing to NF-KB/βCatenin axis activation (Lauriola, Enuka et al. 2014), consequently promoting cell survival and limiting overall drug response. Specifically, secondary activation of βCatenin drives the production of an oncogenic cluster of microRNAs 17-92 (Lauriola, Donghwa et al. 2015) implicated in EMT transformation and resist- ance in colon clones. Hence βCatenin and EGFR combination pharmacological inhi- bition overcome the colon spheres growth and enhance tumor regression. These findings suggest that inhibition of EGFR feedback loop along with NF-kB/βCatenin axis may increase the response to a broad spectrum of drugs that target pathways of oncogene addiction
Extracellular Vesicles and Epidermal Growth Factor Receptor Activation: Interplay of Drivers in Cancer Progression
Extracellular vesicles (EVs) are of great interest to study the cellular mechanisms of cancer development and to diagnose and monitor cancer progression. EVs are a highly heterogeneous population of cell derived particles, which include microvesicles (MVs) and exosomes (EXOs). EVs deliver intercellular messages transferring proteins, lipids, nucleic acids, and metabolites with implications for tumour progression, invasiveness, and metastasis. Epidermal Growth Factor Receptor (EGFR) is a major driver of cancer. Tumour cells with activated EGFR could produce EVs disseminating EGFR itself or its ligands. This review provides an overview of EVs (mainly EXOs and MVs) and their cargo, with a subsequent focus on their production and effects related to EGFR activation. In particular, in vitro studies performed in EGFR-dependent solid tumours and/or cell cultures will be explored, thus shedding light on the interplay between EGFR and EVs production in promoting cancer progression, metastases, and resistance to therapies. Finally, an overview of liquid biopsy approaches involving EGFR and EVs in the blood/plasma of EGFR-dependent tumour patients will also be discussed to evaluate their possible application as candidate biomarkers
A module of inflammatory cytokines defines resistance of colorectal cancer to EGFR inhibitors
Epidermal Growth Factor Receptor (EGFR) activates a robust signalling network to which colon cancer tumours often become addicted. Cetuximab, one of the monoclonal antibodies targeting this pathway, is employed to treat patients with colorectal cancer. However, many patients are intrinsically refractory to this treatment, and those who respond develop secondary resistance along time. Mechanisms of cancer cell resistance include either acquisition of new mutations or non genomic activation of alternative signalling routes. In this study, we employed a colon cancer model to assess potential mechanisms driving resistance to cetuximab. Resistant cells displayed increased ability to grow in suspension as colonspheres and this phenotype was associated with poorly organized structures. Factors secreted from resistant cells were causally involved in sustaining resistance, indeed administration to parental cells of conditioned medium collected from resistant cells was sufficient to reduce cetuximab efficacy. Among secreted factors, we report herein that a signature of inflammatory cytokines, including IL1A, IL1B and IL8, which are produced following EGFR pathway activation, was associated with the acquisition of an unresponsive phenotype to cetuximab in vitro. This signature correlated with lack of response to EGFR targeting also in patient-derived tumour xenografts. Collectively, these results highlight the contribution of inflammatory cytokines to reduced sensitivity to EGFR blockade and suggest that inhibition of this panel of cytokines in combination with cetuximab might yield an effective treatment strategy for CRC patients refractory to anti-EGFR targeting
Aberrant MET activation impairs perinuclear actin cap organization with YAP1 cytosolic relocation
: Little is known about the signaling network responsible for the organization of the perinuclear actin cap, a recently identified structure holding unique roles in the regulation of nuclear shape and cell directionality. In cancer cells expressing a constitutively active MET, we show a rearrangement of the actin cap filaments, which crash into perinuclear patches associated with spherical nuclei, meandering cell motility and inactivation of the mechano-transducer YAP1. MET ablation is sufficient to reactivate YAP1 and restore the cap, leading to enhanced directionality and flattened nuclei. Consistently, the introduction of a hyperactive MET in normal epithelial cells, enhances nuclear height and alters the cap organization, as also confirmed by TEM analysis. Finally, the constitutively active YAP1 mutant YAP5SA is able to overcome the effects of oncogenic MET. Overall, our work describes a signaling axis empowering MET-mediated YAP1 dampening and actin cap misalignment, with implications for nuclear shape and cell motility
The autocrine loop of ALK receptor and ALKAL2 ligand is an actionable target in consensus molecular subtype 1 colon cancer
In the last years, several efforts have been made to classify colorectal cancer (CRC) into well-defined molecular subgroups, representing the intrinsic inter-patient heterogeneity, known as Consensus Molecular Subtypes (CMSs)
The R521K polymorphism of EGFR influences the risk of colorectal cancer
In colorectal cancer (CRC) epidermal growth factor receptor (EGFR) family members (EGFR, HER2, HER3 and HER4) have been found frequently over-expressed. New therapies directed against EGFR have been developed in many human cancers. Unexpectedly, EGFR alterations could be good prognostic indicators, like in lung cancer, where an EGFR variant in non-smoker female patients is associated with higher survival after surgery and increases the efficiency of therapy based on EGFR inhibitors. The role of the genetic polymorphisms of the EGFR family members in colorectal cancer development has not been completely explored. In our preliminary study, three missense polymorphisms mapping in EGFR family members have been investigated in the peripheral blood of a small Italian sample size of 70 patients and 72 controls to verify if they could be considered CRC susceptibility factors. For the first time, the evidence of genotype association was found for the R521K EGFR polymorphism: the protective effect for this variant allele has been found to reduce the risk for colon cancer onset
Microarray-based identification and RT-PCR test screening for epithelial-specific mRNAs in peripheral blood of patients with colon cancer
BACKGROUND: The efficacy of screening for colorectal cancer using a simple blood-based assay for the detection of tumor cells disseminated in the circulation at an early stage of the disease is gaining positive feedback from several lines of research. This method seems able to reduce colorectal cancer mortality and may replace colonoscopy as the most effective means of detecting colonic lesions. METHODS: In this work, we present a new microarray-based high-throughput screening method to identifying candidate marker mRNAs for the early detection of epithelial cells diluted in peripheral blood cells. This method includes 1. direct comparison of different samples of colonic mucosa and of blood cells to identify consistent epithelial-specific mRNAs from among 20,000 cDNA assayed by microarray slides; 2. identification of candidate marker mRNAs by data analysis, which allowed selection of only 10 putative differentially expressed genes; 3. Selection of some of the most suitable mRNAs (TMEM69, RANBP3 and PRSS22) that were assayed in blood samples from normal subjects and patients with colon cancer as possible markers for the presence of epithelial cells in the blood, using reverse transcription – polymerase chain reaction (RT-PCR). RESULTS: Our present results seem to provide an indication, for the first time obtained by genome-scale screening, that a suitable and consistent colon epithelium mRNA marker may be difficult to identify. CONCLUSION: The design of new approaches to identify such markers is warranted
Displayed correlation between gene expression profiles and submicroscopic alterations in response to cetuximab, gefitinib and EGF in human colon cancer cell lines
Background: EGFR is frequently overexpressed in colon cancer. We characterized HT-29 and
Caco-2, human colon cancer cell lines, untreated and treated with cetuximab or gefitinib alone and
in combination with EGF.
Methods: Cell growth was determined using a variation on the MTT assay. Cell-cycle analysis was
conducted by flow cytometry. Immunohistochemistry was performed to evaluate EGFR expression
and scanning electron microscopy (SEM) evidenced the ultrastructural morphology. Gene
expression profiling was performed using hybridization of the microarray Ocimum Pan Human 40
K array A.
Results: Caco-2 and HT-29 were respectively 66.25 and 59.24 % in G0/G1. They maintained this
level of cell cycle distribution after treatment, suggesting a predominantly differentiated state.
Treatment of Caco-2 with EGF or the two EGFR inhibitors produced a significant reduction in their
viability. SEM clearly showed morphological cellular transformations in the direction of cellular death in both cell lines treated with EGFR inhibitors. HT-29 and Caco-2 displayed an important
reduction of the microvilli (which also lose their erect position in Caco-2), possibly invalidating
microvilli absorption function. HT-29 treated with cetuximab lost their boundary contacts and
showed filipodi; when treated with gefitinib, they showed some vesicles: generally membrane
reshaping is evident. Both cell lines showed a similar behavior in terms of on/off switched genes
upon treatment with cetuximab. The gefitinib global gene expression pattern was different for the
2 cell lines; gefitinib treatment induced more changes, but directly correlated with EGF treatment.
In cetuximab or gefitinib plus EGF treatments there was possible summation of the morphological
effects: cells seemed more weakly affected by the transformation towards apoptosis. The genes
appeared to be less stimulated than for single drug cases.
Conclusion: This is the first study to have systematically investigated the effect of cetuximab or
gefitinib, alone and in combination with EGF, on human colon cancer cell lines. The EGFR inhibitors
have a weaker effect in the presence of EGF that binds EGFR. Cetuximab treatment showed an
expression pattern that inversely correlates with EGF treatment. We found interesting cytomorphological
features closely relating to gene expression profile. Both drugs have an effect on
differentiation towards cellular death
- …