14 research outputs found

    New Insights into the mineralogy of the Atlantis II deep metalliferous sediments, Red Sea

    Get PDF
    The Atlantis II Deep of the Red Sea hosts the largest known hydrothermal ore deposit on the ocean floor and the only modern analog of brine pool-type metal deposition. The deposit consists mainly of chemical-clastic sediments with input from basin-scale hydrothermal and detrital sources. A characteristic feature is the millimeter-scale layering of the sediments, which bears a strong resemblance to banded iron formation (BIF). Quantitative assessment of the mineralogy based on relogging of archived cores, detailed petrography, and sequential leaching experiments shows that Fe-(oxy)hydroxides, hydrothermal carbonates, sulfides, and authigenic clays are the main “ore” minerals. Mn-oxides were mainly deposited when the brine pool was more oxidized than it is today, but detailed logging shows that Fe-deposition and Mn-deposition also alternated at the scale of individual laminae, reflecting short-term fluctuations in the Lower Brine. Previous studies underestimated the importance of nonsulfide metal-bearing components, which formed by metal adsorption onto poorly crystalline Si-Fe-OOH particles. During diagenesis, the crystallinity of all phases increased, and the fine layering of the sediment was enhanced. Within a few meters of burial (corresponding to a few thousand years of deposition), biogenic (Ca)-carbonate was dissolved, manganosiderite formed, and metals originally in poorly crystalline phases or in pore water were incorporated into diagenetic sulfides, clays, and Fe-oxides. Permeable layers with abundant radiolarian tests were the focus for late-stage hydrothermal alteration and replacement, including deposition of amorphous silica and enrichment in elements such as Ba and Au

    Early depositional history of metalliferous sediments in the Atlantis II Deep of the Red Sea: Evidence from rare earth element geochemistry

    No full text
    The Atlantis II Deep is a brine-filled depression on the slowly spreading Red Sea rift axis. It is by far the largest deposit of hydrothermally precipitated metals on the present ocean floor and the only known modern deposit that is analogous to laminated Fe-rich chemical sediments, such as banded iron formation (BIF). The brine pool at the bottom of the Atlantis II Deep creates an environment where most of the hydrothermally sourced elements can be dispersed and deposited over an area of ∌60 km2. We analyzed the rare earth element concentrations in 100 small-volume samples from 9 cores in different parts of the Atlantis II Deep to better understand the origins of different types of metalliferous sediments (detrital, proximal hydrothermal and distal hydrothermal). Our results agree with earlier studies based on larger bulk samples that show the composition of the major depositional units is related to major changes in the location and intensity of hydrothermal activity and the amount of hydrothermal versus background sedimentation. In this paper, we address the origins of chemically distinct laminae (down to sub-millimeter) that correspond to ∌annual deposition. REE patterns clearly reflect 3 different sources (e.g., detrital, scavenging, direct hydrothermal input). Detrital REE that are delivered to the Deep from outside account for most of the REE in the sediments of the Atlantis II Deep, similar to BIF, and are unaffected by fractionation due to hydrothermal processes during deposition and diagenesis. Fe- and Mn-(oxy)hydroxides that form at the anoxic–oxic boundary scavenge REE from the brine pool as they settle. The Fe-(oxy)hydroxides contain a larger proportion of REE from seawater than any other sediment-type and also scavenge REE from pore waters after deposition. In contrast, the Mn-(oxy)hydroxides dissolve before deposition and thus function as transporting agents between seawater and the brine. However, there is little evidence for direct seawater influence in the REE geochemistry of the sediments (e.g., Y/Ho ratio). Non-ferrous sulfides form proximal to the hydrothermal vent source and inherit an hydrothermal REE pattern. The total REE content of the presently forming Fe-(oxy)hydroxides is very low due to limited input of REE into the brine. The largest proportion of non-detrital REE appears to have been deposited early in the history of the basin from an initial brine pool that was relatively enriched in REE, followed by a change in REE chemistry in later sediments. Similar abrupt changes in the REE chemistry of ancient chemical sediments may record similar processes, including changes in local basin evolution and input of REE from different sources

    Trace metal distribution in the Atlantis II Deep (Red Sea) sediments

    No full text
    The Atlantis II Deep is one of the only locations on the modern seafloor where active formation of a brine pool-type stratiform ore deposit can be studied. The presence of the brine pool causes retention of the hydrothermally released metals within the brine covered area, resulting in the accumulation of 90 Mt of low-grade metalliferous sediment (2.06% Zn, 0.46% Cu, 41 g/t Ag, and 0.5 g/t Au; Guney et al., 1988). Almost all metals are derived from hydrothermal input, but some are also derived from seawater (e.g., Mo), pelagic phytoplankton (Ni) and detrital input (Cr). The hydrothermal fluid that is vented into the pool is rich in metals but relatively low in reduced sulfur compared to open ocean black smokers. Metals are deposited as sulfides from the cooling hydrothermal fluid but also by adsorption onto non-sulfidic “surface-active” particles (Si–Fe-OOH) in the brine pool. An unexpected increase in the Cu/Zn ratio of the sediments with distance from the vent source(s) may reflect pulses of higher-temperature venting and increased Cu fluxes to the brine pool, which are recorded as higher Cu/Zn ratios in the distal sediments or, alternatively, more efficient adsorption of Cu to Fe-OOH particles in the distal brine. During early diagenesis (a few thousand years) metals that are loosely bound to surface-active particles in the sediment apparently react with H2S to form sulfides. Proximal to the inferred vents, the ambient pore water is highly concentrated in trace metals such as Cd, Ag and Hg that are incorporated in diagenetic sulfides, including chalcopyrite and sphalerite. At greater distance from the vents, trace metals such as Mo, As, and Ga are taken up by framboidal pyrite. High concentrations of Au (up to 3 ppm) are found in both proximal and distal metalliferous sediments, indicating that both primary deposition with sulfides and adsorption by diagenetic pyrite are important depositional processes. Some of the inferred pathways for metal precipitation in the Atlantis II Deep sediments, especially adsorption onto surface-active particles and subsequent incorporation in sulfides during diagenesis, may have been important unrecognized processes for metal accumulation in ancient stratiform ore deposits thought to have formed in brine pools

    Induced polarization of seafloor massive sulfides

    No full text
    Sefloor massive sulfides (SMS) are believed to constitute an important future mineral resource. Nevertheless, little is known about the electrical properties of SMS, in particular under in-situ conditions. We measured electrical impedance spectra of 40 samples, 30 of which are sulfidebearing, and 10 are unmineralized host-rock. The samples were saturated with sodium chloride solution with 5 S/m conductivity. The resistivity magnitude shows a clear difference between mineralized and unmineralized samples, and also a weak grouping between the different types of mineralization. The imaginary conductivity at 1 Hz indicates a more pronounced discrimination between mineralized and unmineralized samples, suggesting that complex measurements might be useful for exploration purposes. We also measured spectra under dry conditions. Surprisingly, the sulfide-bearing samples exhibit significant phase shifts even for dry samples, indicating that the conducting minerals themselves cause a phase shift, and an interaction with an electrolyte might not be necessary
    corecore