3 research outputs found

    Atlantic salmon return rate increases with smolt length

    Get PDF
    Recent declines in Atlantic salmon Salmo salar populations are generally attributed to factors in their marine life-phase. However, it is postulated that factors affecting their freshwater life-phase might impact their marine survival, such as the influence of body size. While larger smolts are widely hypothesized to have higher marine survival rates, empirical support remains scant, in part due to inadequate data and ambiguous statistical analyses. Here, we test the influence of smolt body size on marine return rates, a proxy for marine survival, using a 12-year dataset of 3688 smolts tagged with passive integrated transponders in the River Frome, Southern England. State-space models describe the probability of smolts surviving their marine phase to return as 1 sea-winter (1SW) or multi-sea-winter adults as a function of their length, while accounting for imperfect detection and missing data. Models predicted that larger smolts had higher return rates; the most parsimonious model included the effect of length on 1SW return rate. This prediction is concerning, as freshwater juvenile salmon are decreasing in size on the River Frome, and elsewhere. Thus, to maximize adult returns, restoration efforts should focus on freshwater life-stages, and maximize both the number and the size of emigrating smolts

    Tumor immunosurveillance in human cancers

    Get PDF
    Until now, the anatomic extent of tumor (TNM classification) has been by far the most important factor to predict the prognosis of colorectal cancer patients. However, in recent years, data collected from large cohorts of human cancers demonstrated that the immune contexture of the primary tumors is an essential prognostic factor for patients’ disease-free and overall survival. Tumoral and immunological markers predicted by systems biology methods are involved in the shaping of an efficient immune reaction and can serve as targets for novel therapeutic approaches. Global analysis of tumor microenvironment showed that the nature, the functional orientation, the density, and the location of adaptive immune cells within distinct tumor regions influence the risk of relapse events. The density and the immune cell location within the tumor have a prognostic value that is superior to the TNM classification, and tumor invasion is statistically dependent on the host-immune reaction. Thus, the strength of the immune reaction could advance our understanding of cancer evolution and have important consequences in clinical practice
    corecore