10 research outputs found

    Enhanced performance of an affinity biosensor interface based on mixed self-assembled monolayers of thiols on gold

    No full text
    An affinity biosensor interface of a biosensor is the interface between the sample and the transducer surface and is therefore of the utmost importance for the general performance of a biosensor. For immunosensor applications the affinity biosensor interface consists of antibodies, which are preferably covalently attached to the transducer surface. In this paper the properties and the enhanced performance of an affinity biosensor interface based on mixed self-assembled monolayers (SAMs) on gold are discussed. Mixed SAMs consist of two different functionalities, which allow attachment of bioreceptor molecules and avoid nonspecific adsorption. In this work, mixed SAMs of thiols with carboxylic and hydroxyl or poly(ethylene glycol) groups are characterized with contact angle measurements, cyclic voltammetry, and grazing-angle Fourier transform infrared spectroscopy. It is found that the various mixed SAMs exhibit acceptable coverage and structural properties. Most importantly, surface plasmon resonance measurements clearly show the enhanced performance of these mixed SAMs with regard to sensitivity, stability, and selectivity compared to commercially available affinity biosensor interfaces. This superiority is experimentally demonstrated by evaluating the amount of immobilized antibodies, the recognition of antigens by the immobilized antibody, and the nonspecific adsorption of IgG molecules on the antibody-coated surfaces.status: publishe

    Formation of dense self-assembled monolayers of (n-decyl)trichlorosilanes on Ta/Ta2O5

    No full text
    Tantalum pentoxide (Ta2O5) is a promising material for the realization of biological interfaces because of its high dielectric constant, its high chemical stability, and its excellent passivating properties. Nevertheless, the deposition of highly organized silane SAMs to realize well-defined and tailored Ta2O5-based (bio)interfaces, has not been studied in great detail as of yet. In this work, we have investigated the formation of a highly ordered, dense monolayer of trichlorosilanes on Ta2O5 surfaces. Specifically, two different cleaning procedures for Ta2O5 were compared and (n-decyl)trichlorosilane (DTS) was used to study the effect of both cleaning methods on the silanization of Ta2O5. Both types of cleaning allowed the formation of complete and crystalline DTS monolayers on Ta2O5, in contrast with the incomplete, disordered silane layer assembled on uncleaned Ta2O5. The deposited self-assembled monolayers were studied by means of contact angle goniometry, Brewster angle FTIR, X-ray photoelectron spectroscopy, cyclic voltammetry, and ellipsometry. Infrared analysis exhibited a highly ordered DTS silane film on Ta2O5 and indicated a larger tilt angle of the alkyl chains on this substrate by comparison to DTS on SiO2. Furthermore, with use of ellipsometry and XPS, the silane film thickness on Ta2O5 was determined to be substantially smaller than that reported in the literature for DTS on SiO2, supporting the observations of an increased tilt angle (similar to 45 degrees) on Ta2O5 than on SiO2 (similar to 10 degrees). By means of cyclic voltammetry, the formation of a dense, essentially pinhole-free, silane film was observed on the cleaned samples. In conclusion, the fully characterized and optimized procedure for the silanization of Ta2O5 surfaces with trichlorosilanes will allow the formation of well-defined, reproducible, and controllable chemical interfaces on Ta2O5

    Magnetic particles as labels in bioassays: Interactions between a biotinylated gold substrate and streptavidin magnetic particles

    No full text
    Magnetic particles (MPs) have been attracting much interest as a labeling material for advanced biological and medical applications, such as biomagnetic separation, drug delivery, magnetic resonance imaging, and hyperthermia. In most of these applications, the MPs have been designed to specifically interact with a target, such as cells or proteins, moving freely in a solution. However, for surface-based applications, such as magnetic biosensing, these MPs must bind specifically with a target that is immobilized onto a planar substrate. Consequently, new interaction phenomena, which influence the binding of the MPs to the substrate, have to be taken into account. To achieve adequate binding characteristics and to optimize the MPs toward substrate labeling, these physicochemical interactions should be properly identified. In this paper, the interactions between 16 commercially available streptavidin MPs and a biotinylated gold substrate were monitored in real time by surface plasmon resonance technology and the particle surface coverage was calculated by optical microscopy. On the basis of the type of interactions, the MPs studied in this paper could be classified into three different cases: (I) MPs that bind to the biotinylated substrate via the specific streptavidin-biotin interactions, without showing any nonspecific interactions; (II) MPs that do not bind to the substrate; and (III) MPs that bind to the biotinylated substrate via nonspecific interactions rather than via specific streptavidin-biotin interactions. The three cases were understood by determining the surface charges of both the particle and the substrate in zeta potential measurements. It was found that binding of MPs to the substrate was strongly dependent on the amount and the sign of the charges on both surfaces. The strong influence of electrostatic interactions was validated by simulating the total interaction force between a streptavidin MP and a biotinylated substrate by use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, while the gravitational force and the streptavidin-biotin force were accounted for. Finally, we conclude that apart from a well-controlled streptavidin coating, the surface charge of the particle and the substrate plays a pivotal role in the construction of MP assays on surfaces.status: publishe

    Realization and characterization of porous gold for increased protein coverage on acoustic sensors

    No full text
    Immunosensors show great potential for the direct detection of biological molecules. The sensitivity of these affinity-based biosensors is dictated by the amount of receptor molecules immobilized on the sensor surface. An enlargement of the sensor area would allow for an increase of the binding capacity, hence a larger amount of immobilized receptor molecules. To this end, we use electrochemically deposited "gold black" as a porous sensor surface for the immobilization of proteins. In this paper, we have analyzed the different parameters that define the electrochemical growth of porous gold, starting from flat gold surfaces, using different characterization techniques. Applied potentials of -0.5 V versus a reference electrode were found to constitute the most adequate conditions to grow porous gold surfaces. Using cyclic voltammetry, a 16 times increase of the surface area was observed under these electrochemical deposition conditions. In addition, we have assessed the immobilization degree of alkanethiols and of proteins on these different porous surfaces. The optimized deposition conditions for realizing porous gold substrates lead to a 11.4-fold increase of thiol adsorption and a 3.3-fold increase of protein adsorption, using the quartz crystal microbalance (QCM-D) as a biological transducer system. Hence, it follows that the high specific area of the porous gold can amplify the final sensitivity of the original flat surface device.status: publishe

    Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible

    No full text
    Ferrite magnetic nanoparticles (MNPs) were functionalized with a variety of silanes bearing different functional endgroups to render them stable with respect to aggregation and keep them well-dispersed in aqueous media. The MNPs were prepared by the thermal decomposition method, widely used for the synthesis of monodisperse nanoparticles with controllable size. This method makes use of a hydrophobic surfactant to passivate the surface, which results in nanoparticles that are solely dispersible in nonpolar solvents. For use in biological applications, these nanoparticles need to be made water-dispersible. Therefore, a new procedure was developed on the basis of the exchange of the hydrophobic surface ligands with silanes bearing different endgroups to decorate ferrite magnetic nanoparticles with diverse functionalities . By this means, we could easily determine the influence of the endgroup on the nanoparticle stability and water-dispersibility. Amino-, carboxylic acid- and poly(ethylene glycol)-terminated silanes were found to render the MNPs highly stable and water-dispersible because of electrostatic and/or steric repulsion. The silane molecules were also found to form a protective layer against mild acid and alkaline environments. The ligand exchange on the nanoparticle surface was thoroughly characterized using SQUID, TEM, XPS, DLS, TGA, FTIR, UV-vis, and zeta potential measurements. The presented approach provides a generic strategy to functionalize magnetic ferrite nanoparticles and to form stable dispersions in aqueous media, which facilitates the use of these magnetic nanoparticles in biological applications.status: publishe
    corecore