1,111 research outputs found
Directional emission of stadium-shaped micro-lasers
The far-field emission of two dimensional (2D) stadium-shaped dielectric
cavities is investigated. Micro-lasers with such shape present a highly
directional emission. We provide experimental evidence of the dependance of the
emission directionality on the shape of the stadium, in good agreement with ray
numerical simulations. We develop a simple geometrical optics model which
permits to explain analytically main observed features. Wave numerical
calculations confirm the results.Comment: 4 pages, 8 figure
Anisotropic Decay Dynamics of Photoexcited Aligned Carbon Nanotube Bundles
We have performed polarization-dependent ultrafast pump-probe spectroscopy of
a film of aligned single-walled carbon nanotube bundles. By taking into account
imperfect nanotube alignment as well as anisotropic absorption cross sections,
we quantitatively determined distinctly different photo-bleaching dynamics for
polarizations parallel and perpendicular to the tube axis. For perpendicular
polarization, we observe a slow (1.0-1.5 ps) relaxation process, previously
unobserved in randomly-oriented nanotube bundles. We attribute this slower
dynamics to the excitation and relaxation of surface plasmons in the radial
direction of the nanotube bundles.Comment: 4 pages, 3 figure
Origin of the excitonic recombinations in hexagonal boron nitride by spatially resolved cathodoluminescence spectroscopy
The excitonic recombinations in hexagonal boron nitride (hBN) are
investigated with spatially resolved cathodoluminescence spectroscopy in the UV
range. Cathodoluminescence images of an individual hBN crystallite reveals that
the 215 nm free excitonic line is quite homogeneously emitted along the
crystallite whereas the 220 nm and 227 nm excitonic emissions are located in
specific regions of the crystallite. Transmission electron microscopy images
show that these regions contain a high density of crystalline defects. This
suggests that both the 220 nm and 227 nm emissions are produced by the
recombination of excitons bound to structural defects
Alignement experience in STAR
The STAR experiment at RHIC uses four layers of silicon strip and silicon drift detectors for secondary vertex reconstruction. An attempt for a direct charm meson measurement put stringent requirements on alignment and calibration. We report on recent alignment and drift velocity calibration work performed on the inner silicon tracking system
Hard and soft probe - medium interactions in a 3D hydro+micro approach at RHIC
We utilize a 3D hybrid hydro+micro model for a comprehensive and consistent
description of soft and hard particle production in ultra-relativistic
heavy-ion collisions at RHIC. In the soft sector we focus on the dynamics of
(multi-)strange baryons, where a clear strangeness dependence of their
collision rates and freeze-out is observed. In the hard sector we study the
radiative energy loss of hard partons in a soft medium in the multiple soft
scattering approximation. While the nuclear suppression factor does
not reflect the high quality of the medium description (except in a reduced
systematic uncertainty in extracting the quenching power of the medium), the
hydrodynamical model also allows to study different centralities and in
particular the angular variation of with respect to the reaction
plane, allowing for a controlled variation of the in-medium path-length.Comment: 5 pages, 4 figures, Quark Matter 2006 proceedings, to appear in
Journal of Physics
Inferring periodic orbits from spectra of simple shaped micro-lasers
Dielectric micro-cavities are widely used as laser resonators and
characterizations of their spectra are of interest for various applications. We
experimentally investigate micro-lasers of simple shapes (Fabry-Perot, square,
pentagon, and disk). Their lasing spectra consist mainly of almost equidistant
peaks and the distance between peaks reveals the length of a quantized periodic
orbit. To measure this length with a good precision, it is necessary to take
into account different sources of refractive index dispersion. Our experimental
and numerical results agree with the superscar model describing the formation
of long-lived states in polygonal cavities. The limitations of the
two-dimensional approximation are briefly discussed in connection with
micro-disks.Comment: 13 pages, 19 figures, accepted for publication in Physical Review
- …