117 research outputs found

    Microfluidic breakups of confined droplets against a linear obstacle: The importance of the viscosity contrast.

    No full text
    International audienceCombining experiments and theory, we investigate the break-up dynamics of deformable objects, such as drops and bubbles, against a linear micro-obstacle. Our experiments bring the role of the viscosity contrast Δη between dispersed and continuous phases to light: the evolution of the critical capillary number to break a drop as a function of its size is either nonmonotonic (Δη>0) or monotonic (Δη≤0). In the case of positive viscosity contrasts, experiments and modeling reveal the existence of an unexpected critical object size for which the critical capillary number for breakup is minimum. Using simple physical arguments, we derive a model that well describes observations, provides diagrams mapping the four hydrodynamic regimes identified experimentally, and demonstrates that the critical size originating from confinement solely depends on geometrical parameters of the obstacle

    Comment circulent des gouttes dans un laboratoire sur puce ?

    No full text
    National audienceLes applications microfluidiques à haut débit visent à miniaturiser un laboratoire d'analyse à l'échelle de quelques centimètres carrés, afin d'améliorer la rapidité et la sensibilité des mesures. Dans ce contexte, l'utilisation de gouttelettes produites en flux continu s'avère une stratégie prometteuse permettant de manipuler des volumes allant du picolitre au nanolitre avec une grande répétabilité, ces gouttelettes faisant office de " microtubes à essai ". Nous discutons ici de cette approche, la " microfluidique digitale ", qui nécessite de comprendre et maîtriser l'écoulement de gouttes au sein de circuits hydrodynamiques. Nous nous intéressons tout particulièrement à la dynamique riche et complexe de ces systèmes, qui peuvent servir de modèles pour comprendre la circulation d'objets discrets dans des réseaux, c'est-à-dire de problèmes liés au trafic

    Formation, fragmentation et Ă©tats oscillants de gouttelettes multilamellaires

    Get PDF
    Dans ce travail de thèse, nous étudions l'effet d'un écoulement de cisaillement sur des phases de membranes. Du fait de leurs grandes dimensions caractéristiques, ces fluides complexes sont susceptibles de présenter de forts couplages entre leur structure et l'écoulement. Des vésicules multilamellaires peuvent être obtenues par la mise en écoulement de la phase lamellaire ou d'un mélange de phases lamellaire/éponge. Dans le premier cas, (« Texture Oignon »), la taille des vésicules est contrôlée par l'élasticité, tandis que dans le second système, (« Gouttelettes de Taylor ») la taille moyenne résulte d'une compétition entre les forces visqueuse et capillaire. Malgré ces différences, nous montrons que dans les deux systèmes la formation des vésicules qui est contrôlée par la déformation subie par l'échantillon semble résulter d'une instabilité primaire d'ondulation des membranes sous écoulement. Nous étudions alors la fragmentation des gouttelettes de Taylor sous écoulement. Nous montrons que le processus de rupture qui ne nécessite pas d'élongation des gouttelettes semble gouverné par une instabilité de la structure interne des gouttelettes smectiques. Enfin, nous présentons l'observation expérimentale d'oscillations entretenues de la taille des gouttelettes qui devient alors une fonction temporelle périodique. Un mécanisme possible à l'origine de telles oscillations est discuté.In this work, we investigate the effect of shear flow on membrane phases. Due to their large characteristic length scales, these complex fluids present strong couplings between their structure and the flow. Multilamellar vesicles can be formed upon shearing lamellar phases and lamellar/sponge mixtures. In the first case, (“Onion Texture”), the vesicle size is monitored by elasticity whereas in the second system, the mean size results from a balance between capillary and viscous forces (“Taylor's Droplets”). However, despite these differences, in both systems we show that the formation of vesicles which is a strain controlled process seems monitored by a primary buckling instability of the lamellae under flow. Then, we study the fragmentation under flow of the Taylor's droplets. We show that the rupture process which does not require any elongation of the droplets seems triggered by an instability of the inner structure droplet. Finally, experimental observations of droplet size sustained oscillations are reported. A possible mechanism for such kinds of oscillations is discussed

    Passive breakups of isolated drops and one-dimensional assemblies of drops in microfluidic geometries: experiments and models.

    No full text
    International audienceUsing two different geometries, rectangular obstacles and asymmetric loops, we investigate the breakup dynamics of deformable objects, such as drops and bubbles, confined in microfluidic devices. We thoroughly study two distinct flow configurations that depend on whether object-to-object hydrodynamic interactions are allowed. When such interactions are introduced, we find that the volumes of the daughter objects created after breakup solely depend on the geometrical features of the devices and are not affected by the hydrodynamic and physicochemical variables; these results are in sharp contrast with those obtained for non-interacting objects. For both configurations, we provide simple phenomenological models that capture well the experimental findings and predict the evolution of the volumes of the daughter objects with the controlling dimensionless quantities that are identified. We introduce a mean-field approximation, which permits accounting for the interactions between objects during breakup and we discuss its conditions of validity

    Defects of structure in one-dimensional trains of drops of alternating composition

    No full text
    International audienceMerging two periodic droplet trains at a T-junction, we investigate the production of one-dimensional (1D) trains of drops of alternating composition. The structure of these trains consists of a succession of well-defined patterns and defects. A discrete model recently introduced to describe the structure of double emulsions made with two-step microfluidic dripping techniques predicts the nature of these patterns and their scheme of arrangement in a train as functions of the rates at which the two droplet trains reach the junction. Millifluidic experiments validate these predictions

    Slow relaxation mode in concentrated oil-in-water microemulsions consisting of repulsive droplets.

    No full text
    International audienceThe present contribution reports on the observation of two diffusive relaxation modes in a concentrated microemulsion made of repulsive droplets. These two modes can be interpreted in the frame of Weissman's and Pusey's theoretical pioneering works. The fast mode is associated to the collective diffusion of droplets whereas the slow one corresponds to the relaxation of droplet concentration fluctuations associated with composition and/or size. We show that (i) repulsive interactions considerably slow down the latter and (ii) a generalized Stokes Einstein relationship between its coefficient of diffusion and the Newtonian viscosity of the solutions, similar to the Walden's rule for electrolytes, holds for concentrated microemulsion systems made of repulsive droplets

    Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    Full text link
    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress whereas for intermediate shear rates, it becomes a periodic function of time. A possible mechanism for such kind of oscillations is discussed

    Path selection rules for droplet trains in single-lane microfluidic networks.

    No full text
    International audienceWe investigate the transport of periodic trains of droplets through microfluidic networks having one inlet, one outlet, and nodes consisting of T junctions. Variations of the dilution of the trains, i.e., the distance between drops, reveal the existence of various hydrodynamic regimes characterized by the number of preferential paths taken by the drops. As the dilution increases, this number continuously decreases until only one path remains explored. Building on a continuous approach used to treat droplet traffic through a single asymmetric loop, we determine selection rules for the paths taken by the drops and we predict the variations of the fraction of droplets taking these paths with the parameters at play including the dilution. Our results show that as dilution decreases, the paths are selected according to the ascending order of their hydrodynamic resistance in the absence of droplets. The dynamics of these systems controlled by time-delayed feedback is complex: We observe a succession of periodic regimes separated by a wealth of bifurcations as the dilution is varied. In contrast to droplet traffic in single asymmetric loops, the dynamical behavior in networks of loops is sensitive to initial conditions because of extra degrees of freedom
    • …
    corecore