10,151 research outputs found

    The baroclinic forcing of the shear-layer three-dimensional instability

    Get PDF
    It has been demonstrated that, within the context of variable-density shear flows, the generation-destruction of vorticity by the baroclinic torque may substantially alter the transition dynamics of shear flows. The focus of the present contribution is on baroclinic effects beyond the Boussinesq approximation but uncorrelated to compressibility. The baroclinic torque results from the inertial component of the pressure gradient only. The vorticity evolves within a quasi-solenoidal velocity field without suffering from strong dilatationnal effects that scale with any relevant Mach number. This purely inertial influence of density variations is likely to occur in high Reynolds number mixing of fluids of different densities or in thermal mixing. The vorticity is redistributed to the benefits of the light-side vorticity braid, the other being vorticity depleted in a first stage and feeded with an opposite sign vorticity afterwards, as stressed by Reinaud et al. (1999). These two opposite-sign vorticity sheets are lying around the vanishing primary structure core, still figuring the center of this two-layers system. In three-dimensions the vorticity dynamics is also affected by the vortex stretching mechanism that enable circulation to travel among vorticity components through 3D instability modes. The consequences of the baroclinic redistribution of spanwise vorticity on the development of three-dimensionnal modes is the focus point of the present proposition. The interference with the pairing process and further subharmonics emergence is not yet considered

    Density fluctuation correlations in free turbulent binary mixing

    Get PDF
    This paper is devoted to the analysis of the turbulent mass flux and, more generally, of the density fluctuation correlation (d.f.c.) effects in variable-density fluid motion. The situation is restricted to the free turbulent binary mixing of an inhomogeneous round jet discharging into a quiescent atmosphere. Based on conventional (Reynolds) averaging, a ternary regrouping of the correlations occurring in the statistical averaging of the open equations is first introduced. Then an exact algebraic relationship between the d.f.c. terms and the second-order moments is demonstrated. Some consequences of this result on the global behaviour of variable-density jets are analytically discussed. The effects of the d.f.c. terms are shown to give a qualitative explanation of the influence of the ratio of the densities of the inlet jet and ambient fluid on the centerline decay rates of mean velocity and mass fraction, the entrainment rate and the restructuring of the jet. Finally, the sensitivity of second-order modelling to the d.f.c. terms is illustrated and it is suggested that such terms should be considered as independent variables in the closing procedure

    The Rayleigh–Taylor instability of two-dimensional high-density vortices

    Get PDF
    We investigate the stability of variable-density two-dimensional isolated vortices in the frame of incompressible mixing under negligible gravity. The focus on a single vortex flow stands as a first step towards vortex interactions and turbulent mixing. From heuristic arguments developed on a perturbed barotropic vortex, we find that highdensity vortices are subject to a Rayleigh–Taylor instability. The basic mechanism relies on baroclinic vorticity generation when the density gradient is misaligned with the centripetal acceleration field. For Gaussian radial distributions of vorticity and density, the intensity of the baroclinic torque due to isopycnic deformation is shown to increase with the ratio δ/δρ of the vorticity radius to the density radius. Concentration of mass near the vortex core is confirmed to promote the instability by the use of an inviscid linear stability analysis. We measure the amplification rate for the favoured azimuthal wavenumbers m=2, 3 on the whole range of positive density contrasts between the core and the surroundings. The separate influence of the density-contrast and the radius ratio is detailed for modes up to m=6. For growing azimuthal wavenumbers, the two-dimensional structure of the eigenmode concentrates on a ring of narrowing radial extent centred on the radius of maximum density gradient. The instability of the isolated high-density vortex is then explored beyond the linear stage based on high-Reynolds-number numerical simulations for modes m=2,3 and a moderate density contrast Cρ =0.5. Secondary roll-ups are seen to emerge from the nonlinear evolution of the vorticity and density fields. The transition towards m smaller vortices involves vorticity exchange between initially-rotating dense fluid particles and the irrotational less-dense medium. It is shown that baroclinic enstrophy production is associated with the centrifugal mass ejection away from the vortex centre

    A Constrained Object Model for Configuration Based Workflow Composition

    Full text link
    Automatic or assisted workflow composition is a field of intense research for applications to the world wide web or to business process modeling. Workflow composition is traditionally addressed in various ways, generally via theorem proving techniques. Recent research observed that building a composite workflow bears strong relationships with finite model search, and that some workflow languages can be defined as constrained object metamodels . This lead to consider the viability of applying configuration techniques to this problem, which was proven feasible. Constrained based configuration expects a constrained object model as input. The purpose of this document is to formally specify the constrained object model involved in ongoing experiments and research using the Z specification language.Comment: This is an extended version of the article published at BPM'05, Third International Conference on Business Process Management, Nancy Franc

    GDP nowcasting with ragged-edge data: a semi-parametric modeling

    Get PDF
    This paper formalizes the process of forecasting unbalanced monthly datasets in order to obtain robust nowcasts and forecasts of quarterly gross domestic product (GDP) growth rate through a semi-parametric modeling. This innovative approach lies in the use of non-parametric methods, based on nearest neighbors and on radial basis function approaches, to forecast the monthly variables involved in the parametric modeling of GDP using bridge equations. A real-time experience is carried out on euro area vintage data in order to anticipate, with an advance ranging from 6 to 1 months, the GDP flash estimate for the whole zone.euro area GDP • real-time nowcasting • forecasting • non-parametric methods

    GDP nowcasting with ragged-edge data : A semi-parametric modelling

    Get PDF
    This papier formalizes the process of forecasting unbalanced monthly data sets in order to obtain robust nowcasts and forecasts of quarterly GDP growth rate through a semi-parametric modelling. This innovative approach lies on the use on non-parametric methods, based on nearest neighbors and on radial basis function approaches, ti forecast the monthly variables involved in the parametric modelling of GDP using bridge equations. A real-time experience is carried out on Euro area vintage data in order to anticipate, with an advance ranging from six to one months, the GDP flash estimate for the whole zone.Euro area GDP, real-time nowcasting, forecasting, non-parametric models.

    Fragile detection of solar g modes by Fossat et al

    Full text link
    The internal gravity modes of the Sun are notoriously difficult to detect, and the claimed detection of gravity modes presented in Fossat et al. 2017 is thus very exciting. Given the importance of these modes for understanding solar structure and dynamics, the results must be robust. While Fossat et al. 2017 described their method and parameter choices in detail, the sensitivity of their results to several parameters were not presented. Therefore, we test the sensitivity to a selection of them. The most concerning result is that the detection vanishes when we adjust the start time of the 16.5 year velocity time series by a few hours. We conclude that this reported detection of gravity modes is extremely fragile and should be treated with utmost caution.Comment: 15 pages, 11 Figure

    The structure of a statistically steady turbulent boundary layer near a free-slip surface

    Get PDF
    The interaction between a free-slip surface with unsheared but sustained turbulence is investigated in a series of direct numerical simulations. By changing (i) the distance between the (plane) source of turbulence and the surface, and (ii) the value of the viscosity, a set of five different data sets has been obtained in which the value of the Reynolds-number varies by a factor of 4. The observed structure of the interaction layer is in agreement with current knowledge, being made of three embedded sublayers: a blockage layer, a slip layer, and a Kolmogorov layer. Practical measures of the different thicknesses are proposed that lead to a new Reynolds-number scaling based on easy-to-evaluate surface quantities. This scaling is consistent with previous proposals but makes easier the comparison between free-surface flows when they differ by the characteristics of the distant turbulent field. Its use will be straightforward in a turbulence-modeling framework
    corecore