785 research outputs found

    Functionalized AFM probes for force spectroscopy: eigenmodes shape and stiffness calibration through thermal noise measurements

    Get PDF
    The functionalization of an Atomic Force Microscope (AFM) cantilever with a colloidal bead is a widely used technique when the geometry between the probe and the sample must be controlled, particularly in force spectroscopy. But some questions remain: how does a bead glued at the end of a cantilever influence its mechanical response ? And more important for quantitative measurements, can we still determine the stiffness of the AFM probe with traditional techniques? In this article, the influence of a colloidal mass loading on the eigenmodes shape and resonant frequency is investigated by measuring the thermal noise on rectangular AFM microcantilevers with and without a bead attached at their extremities. The experiments are performed with a home-made ultra-sensitive AFM, based on differential interferometry. The focused beam from the interferometer probes the cantilever at different positions and the spatial shapes of the modes are determined up to the fifth resonance, without external excitation. The results clearly demonstrate that the first eigenmode almost doesn't change by mass loading. However the oscillation behavior of higher resonances present a marked difference: with a particle glued at its extremity, the nodes of the mode are displaced towards the free end of the cantilever. These results are compared to an analytical model taking into account the mass and the inertial moment of the load in an Euler-Bernoulli framework, where the normalization of the eigenmodes is explicitly worked out in order to allow a quantitative prediction of the thermal noise amplitude of each mode. A good agreement between the experimental results and the analytical model is demonstrated, allowing a clean calibration of the probe stiffness

    Reconfigurable Flows and Defect Landscape of Confined Active Nematics

    Full text link
    Using novel micro-printing techniques, we develop a versatile experimental setup that allows us to study how lateral confinement tames the active flows and defect properties of the microtubule/kinesin active nematic system. We demonstrate that the active length scale that determines the self-organization of this system in unconstrained geometries loses its relevance under strong lateral confinement. Dramatic transitions are observed from chaotic to vortex lattices and defect-free unidirectional flows. Defects, which determine the active flow behavior, are created and annihilated on the channel walls rather than in the bulk, and acquire a strong orientational order in narrow channels. Their nucleation is governed by an instability whose wavelength is effectively screened by the channel width. All these results are recovered in simulations, and the comparison highlights the role of boundary conditions

    New insulation fiberboards from sunflower cake with improved thermal and mechanical properties

    Get PDF
    New insulation fiberboards from sunflower cake with improved thermal and mechanical properties were produced by pressing at ambient temperature. Best compromise between mechanical and heat insulation properties (λ = 77.6 mW/m K at 25°C) was a starch-based board with 20% binder content. Because of its promising heat insulation properties, this new fiberboard could be positioned on walls and ceilings for thermal insulation of buildings. The bulk cake was an even better insulation material (only 62.0 mW/m K for thermal conductivity at 25°C): usable as loose fill in the attics of houses

    Active boundary layers

    Full text link
    The role of boundary layers in conventional liquid crystals is commonly subsumed in their anchoring on confining walls. In the classical view, anchoring enslaves the orientational field of the passive material under equilibrium conditions. In this work, we experimentally explore the role of confining walls in the behavior of an active nematic. We find that, under slip boundary conditions, the wall induces the accumulation of negatively charged topological defects in its vicinity, resulting in the formation of a topological boundary layer that polarizes the wall. While the dynamics of wall and bulk defects are decoupled, we find that the active boundary layer influences the overall dynamics of the system, to the point of fully controlling the behavior of the active nematic in situations of strong confinement. Finally, we show that wall defects exhibit behaviors that are essentially different from those of their bulk counterparts, such as high motility or the ability to recombine with another defect of like-sign topological charge. These exotic behaviors result from a change of symmetry induced by the wall in the director field around the defect. Finally, we show that the collective dynamics of wall defects can be described in terms of a one-dimensional Kuramoto-Sivashinsky -like description of spatio-temporal chaos.Comment: 10 pages, 6 figures in main text, 5 figures in S

    Viral glycoprotein gp150 promotes sexual transmission of Murid Herpesvirus-4

    Full text link
    Gammaherpesviruses are important pathogens in human and veterinary medicine. During co-evolution with their hosts, they developed many strategies allowing them to shed infectious particles in presence of immune response. Understanding these strategies is likely to be important to control infection. Interestingly, we recently observed that Murid herpesvirus 4 (MuHV-4), a gammaherpesvirus infecting laboratory mice, could be sexually transmitted between mice. This model offers therefore the opportunity to understand the mechanisms underlying natural transmission. Some of these mechanisms could rely on the glycoprotein 150 (gp150), which could limit virus neutralization and promote the release of infectious particles from cells. In this study, we tested therefore the importance of gp150 in the context of MuHV-4 sexual transmission. Briefly, female mice were infected with WT or gp150- strains expressing luciferase. They were imaged with an in vivo imaging system to follow infection. When lytic replication was observed in the genital tract, infected females were mated with naïve males to compare the capacity of transmission of the two strains. Our results show that, while the gp150- strain has no deficit in reaching and replicating in the female genital tract, it displays a major deficit of sexual transmission in comparison with WT virions. Interestingly, this deficit appears to reflect a deficit of virions release from vaginal epithelial cells. Altogether, our results show that, while gp150 is not required for efficient dissemination and maintenance of MuHV-4 within its host, it is essential for efficient transmission, by promoting the releasing of infectious particles from the mucosal cells

    Active boundary layers in confined active nematics

    Full text link
    The roleofboundary layers inconventional liquidcrystals is commonly related to the mesogen anchoring on confining walls. In the classical view, anchoring enslaves the orientational field of the passive material under equilibrium conditions. In this work, we show that an active nematic can develop active boundary layers that topologically polarize the confining walls. We find that negatively-charged defects accumulate in the boundary layer, regardless of the wall curvature, and they influence the overall dynamics of the system to the point of fully controlling the behavior of the active nematic in situations of strong confinement. Further, we show that wall defects exhibit behaviors that are essentially different from those of their bulk counterparts, such as high motility or the ability to recombinewith another defect of like-sign topological charge. These exotic behaviors result from a change of symmetry induced by the wall in the director field around the defect. Finally, we suggest that the collective dynamics of wall defects might be described in terms of a model equation for one-dimensional spatio-temporal chaos

    Hammerhead flatworms (Platyhelminthes, Geoplanidae, Bipaliinae): mitochondrial genomes and description of two new species from France, Italy, and Mayotte

    Get PDF
    Background: New records of alien land planarians are regularly reported worldwide, and some correspond to undescribed species of unknown geographic origin. The description of new species of land planarians (Geoplanidae) should classically be based on both external morphology and histology of anatomical structures, especially the copulatory organs, ideally with the addition of molecular data. Methods: Here, we describe the morphology and reproductive anatomy of a species previously reported as Diversibipalium “black”, and the morphology of a species previously reported as Diversibipalium “blue”. Based on next generation sequencing, we obtained the complete mitogenome of five species of Bipaliinae, including these two species. Results: The new species Humbertium covidum n. sp. (syn: Diversibipalium “black” of Justine et al., 2018) is formally described on the basis of morphology, histology and mitogenome, and is assigned to Humbertium on the basis of its reproductive anatomy. The type-locality is Casier, Italy, and other localities are in the Department of Pyrénées-Atlantiques, France; some published or unpublished records suggest that this species might also be present in Russia, China, and Japan. The mitogenomic polymorphism of two geographically distinct specimens (Italy vs France) is described; the cox1 gene displayed 2.25% difference. The new species Diversibipalium mayottensis n. sp. (syn: Diversibipalium “blue” of Justine et al., 2018) is formally described on the basis of external morphology and complete mitogenome and is assigned to Diversibipalium on the basis of an absence of information on its reproductive anatomy. The type- and only known locality is the island of Mayotte in the Mozambique Channel off Africa. Phylogenies of bipaliine geoplanids were constructed on the basis of SSU, LSU, mitochondrial proteins and concatenated sequences of cox1, SSU and LSU. In all four phylogenies, D. mayottensis was the sister-group to all the other bipaliines. With the exception of D. multilineatum which could not be circularised, the complete mitogenomes of B. kewense, B. vagum, B. adventitium, H. covidum and D. mayottensis were colinear. The 16S gene in all bipaliine species was problematic because usual tools were unable to locate its exact position. Conclusion: Next generation sequencing, which can provide complete mitochondrial genomes as well as traditionally used genes such as SSU, LSU and cox1, is a powerful tool for delineating and describing species of Bipaliinae when the reproductive structure cannot be studied, which is sometimes the case of asexually reproducing invasive species. The unexpected position of the new species D. mayottensis as sister-group to all other Bipaliinae in all phylogenetic analyses suggests that the species could belong to a new genus, yet to be described

    Brain Vitamin E Deficiency During Development Is Associated With Increased Glutamate Levels and Anxiety in Adult Mice

    Get PDF
    Vitamin E, the most important lipophilic radical scavenging antioxidant in vivo, has a pivotal role in brain. In an earlier study, we observed that adult mice with a defect in the gene encoding plasma phospholipid transfer protein (PLTP) display a moderate reduction in cerebral vitamin E levels, and exacerbated anxiety despite normal locomotion and memory functions. Here we sought to determine whether dietary vitamin E supplementation can modulate neurotransmitter levels and alleviate the increased anxiety phenotype of PLTP-deficient (PLTP−/−) mice. To address this question, a vitamin E-enriched diet was used, and two complementary approches were implemented: (i) “early supplementation”: neurotransmitter levels and anxiety were assessed in 6 months old PLTP−/− mice born from vitamin E-supplemented parents; and (ii) “late supplementation”: neurotransmitter levels and anxiety were assessed in 6 months old PLTP−/− mice fed a vitamin E-enriched diet from weaning. Our results show for the first time that an inadequate supply of vitamin E during development, due to moderate maternal vitamin E deficiency, is associated with reduced brain vitamin E levels at birth and irreversible alterations in brain glutamate levels. They also suggest this deficiency is associated with increased anxiety at adulthood. Thus, the present study leads to conclude on the importance of the micronutrient vitamin E during pregnancy

    Challenge testing with Brochothrix thermosphacta on minced pork meat shows interest to couple metagenetics to metabolomics to study food spoilage

    Full text link
    The spoilage of perishable foods is mainly caused by bacterial activity. The risk of unwanted bacterial growth is particularly high in the minced pork meat. In this work, the natural microbial contaminants of the minced pork meat were followed by 16S ribosomal DNA deep sequencing (metagenetics) during aging tests at different temperatures. Brochothrix thermosphacta MM008 strain was selected as one of the main contaminants responsible for the spoilage of the meat. Minced pork meat previously sterilized by gamma irradiation was inoculated with B. thermosphacta MM008 for challenge tests measuring growth and then incubated at different temperatures. Minced meat samples were taken and analyzed by H-NMR 1D at time 0 and at final time (from 14 to 19 days, depending on the incubation temperature). Orthogonal partial least square discriminant analysis (OPLS-DA) showed that samples, regardless of the incubation temperature, could be splitted into 3 groups according to their spectral profile: 1) samples taken at time 0, 2) samples inoculated with B. thermosphacta and taken at final time, 3) samples uninoculated, taken at final time. From the analysis of the metabolomics data, higher concentrations of glycerol, glucose, taurine, lactate, carnitine, betaine and glycine were identified in the samples of uninoculated minced pork meat and an increased production of creatine, acetate and acetone was found in the samples of minced pork meat inoculated with B. thermosphacta MM008. These observations showed that -omics technologies (metagenetics and metabolomics) could be used conclusively to study microbial spoilage of minced pork meat
    corecore