4,156 research outputs found

    Quantum geometry from phase space reduction

    Full text link
    In this work we give an explicit isomorphism between the usual spin network basis and the direct quantization of the reduced phase space of tetrahedra. The main outcome is a formula that describes the space of SU(2) invariant states by an integral over coherent states satisfying the closure constraint exactly, or equivalently, as an integral over the space of classical tetrahedra. This provides an explicit realization of theorems by Guillemin--Sternberg and Hall that describe the commutation of quantization and reduction. In the final part of the paper, we use our result to express the FK spin foam model as an integral over classical tetrahedra and the asymptotics of the vertex amplitude is determined.Comment: 33 pages, 1 figur

    Scalar Asymptotic Charges and Dual Large Gauge Transformations

    Get PDF
    In recent years soft factorization theorems in scattering amplitudes have been reinterpreted as conservation laws of asymptotic charges. In gauge, gravity, and higher spin theories the asymptotic charges can be understood as canonical generators of large gauge symmetries. Such a symmetry interpretation has been so far missing for scalar soft theorems. We remedy this situation by treating the massless scalar field in terms of a dual two-form gauge field. We show that the asymptotic charges associated to the scalar soft theorem can be understood as generators of large gauge transformations of the dual two-form field. The dual picture introduces two new puzzles: the charges have very unexpected Poisson brackets with the fields, and the monopole term does not always have a dual gauge transformation interpretation. We find analogs of these two properties in the Kramers-Wannier duality on a finite lattice, indicating that the free scalar theory has new edge modes at infinity that canonically commute with all the bulk degrees of freedom.Comment: 16 pages, 2 figure

    The Relativistic Particle: Dirac observables and Feynman propagator

    Get PDF
    We analyze the algebra of Dirac observables of the relativistic particle in four space-time dimensions. We show that the position observables become non-commutative and the commutation relations lead to a structure very similar to the non-commutative geometry of Deformed Special Relativity (DSR). In this framework, it appears natural to consider the 4d relativistic particle as a five dimensional massless particle. We study its quantization in terms of wave functions on the 5d light cone. We introduce the corresponding five-dimensional action principle and analyze how it reproduces the physics of the 4d relativistic particle. The formalism is naturally subject to divergences and we show that DSR arises as a natural regularization: the 5d light cone is regularized as the de Sitter space. We interpret the fifth coordinate as the particle's proper time while the fifth moment can be understood as the mass. Finally, we show how to formulate the Feynman propagator and the Feynman amplitudes of quantum field theory in this context in terms of Dirac observables. This provides new insights for the construction of observables and scattering amplitudes in DSR.Comment: 14 pages, Revtex

    On the semiclassical limit of 4d spin foam models

    Full text link
    We study the semiclassical properties of the Riemannian spin foam models with Immirzi parameter that are constructed via coherent states. We show that in the semiclassical limit the quantum spin foam amplitudes of an arbitrary triangulation are exponentially suppressed, if the face spins do not correspond to a discrete geometry. When they do arise from a geometry, the amplitudes reduce to the exponential of i times the Regge action. Remarkably, the dependence on the Immirzi parameter disappears in this limit.Comment: 32 pages, 5 figure
    corecore