17 research outputs found

    Diurnally Fluctuating pCO2 Modifies the Physiological Responses of Coral Recruits Under Ocean Acidification

    Get PDF
    Diurnal pCO2 fluctuations have the potential to modulate the biological impact of ocean acidification (OA) on reef calcifiers, yet little is known about the physiological and biochemical responses of scleractinian corals to fluctuating carbonate chemistry under OA. Here, we exposed newly settled Pocillopora damicornis for 7 days to ambient pCO2, steady and elevated pCO2 (stable OA) and diurnally fluctuating pCO2 under future OA scenario (fluctuating OA). We measured the photo-physiology, growth (lateral growth, budding and calcification), oxidative stress and activities of carbonic anhydrase (CA), Ca-ATPase and Mg-ATPase. Results showed that while OA enhanced the photochemical performance of in hospite symbionts, it also increased catalase activity and lipid peroxidation. Furthermore, both OA treatments altered the activities of host and symbiont CA, suggesting functional changes in the uptake of dissolved inorganic carbon (DIC) for photosynthesis and calcification. Most importantly, only the fluctuating OA treatment resulted in a slight drop in calcification with concurrent up-regulation of Ca-ATPase and Mg-ATPase, implying increased energy expenditure on calcification. Consequently, asexual budding rates decreased by 50% under fluctuating OA. These results suggest that diel pCO2 oscillations could modify the physiological responses and potentially alter the energy budget of coral recruits under future OA, and that fluctuating OA is more energetically expensive for the maintenance of coral recruits than stable OA

    No-take areas, herbivory and coral reef resilience

    No full text
    Coral reefs worldwide are under threat from various anthropogenic factors, including overfishing and pollution. A new study by Mumby et aL highlights the trophic relationships between humans, carnivorous and herbivorous fishes, and the potential role of no-take areas in maintaining vulnerable coral reef ecosystems. No-take areas, where fishing is prohibited, are vital tools for managing food webs, ecosystem function and the resilience of reefs, in a seascape setting that extends far beyond the boundaries of the reefs themselves

    U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century

    No full text
    Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover

    Re-evaluating mid-Holocene reef “turn-off” on the inshore Southern Great Barrier Reef

    No full text
    © 2020 Elsevier Ltd In the face of changing global climate the future of corals reefs is uncertain. High latitude reefs may offer potential refugia for corals under projected increasing sea surface temperatures (SSTs). To understand the reef growth potential of modern high latitude reefs it is first necessary to understand past reef growth and response to climatic and environmental changes. The history of the Great Barrier Reef (GBR) has been shown to be punctuated by a multi-millennial Mid-Holocene reef “turn-off” or initiation hiatus in the Northern and Southern GBR (∌5500–2500 years before present [yr. BP]). Here we present the results of chronologically constrained reef matrix cores from five continental island fringing reefs and coral communities in the Keppel Islands to revaluate the timing, extent and possible drivers of the Mid-Holocene hiatus in the Southern GBR. Earliest initiation occurred at Wedge and Halfway Islands at 7773 ± 19 yr. BP and 7455 ± 20 yr. BP, respectively. Following initiation, vertical reef accretion at Halfway was comparable to previously reported rates for the GBR of ∌3.4 mm yr−1, increasing to ∌8.0 mm yr−1 between 6100 and 5500 yr. BP. Conversely, the coral community at Wedge Island, located closer to mainland terrestrial influence, accreted \u3c1.0 mm yr−1 to 5500 yr. BP after which a 3000-year stratigraphic hiatus is observed. A negative relative sea level oscillation at 5500 yr. BP coincides with the transition of Halfway reef from vertical accretion to lateral progradation and the “turn-off” of the Wedge Island coral community. The reef at Middle Island appears to have initiated in the midst of the Mid-Holocene hiatus period at ∌3500 yr. BP, with vertical accretion at both Middle and Halfway Islands being the highest for the region\u27s history at 12.5 ± 3.3 mm yr−1 and 15.0 ± 6.0 mm yr−1, respectively, between 3500 and 3000 yr. BP. A proposed late-Holocene relative sea level highstand of ∌1 m at ∌2000 yr. BP coincides with the first dates identified at near-shore Divided Island, and the re-initiation of coral growth at Wedge Island, although both showed limited net vertical accretion. These near-shore sites “turned-off” again between 1300 and 900 yr. BP, likely associated with a rapid relative sea level fall. Reef progradation also slowed at Halfway Island and Middle Island after 1200 yr. BP until a recent increase in reef growth at Middle Island since the late 1970\u27s associated with modern increases in average SSTs. Our data suggests that although reef-scale “turn-off” events occurred, there is no evidence for a regional scale hiatus in coral growth or initiation comparable to that found further north on the GBR. A comparison with other Southern and south-Central GBR reef cores suggests that relative sea level oscillations in conjunction with changes to climate, appear to have driven varying, but synchronous, modifications to reefs at 5500, 4600, 2800 and 1200 yr. BP

    A U-Th Dating Approach to Understanding Past Coral Reef Dynamics and Geomorphological Constraints on Future Reef Growth Potential; Mazie Bay, Southern Great Barrier Reef

    No full text
    ©2020. American Geophysical Union. All Rights Reserved. Reconstructing coral reef histories provides a window of understanding into reef response to changing environmental and climatic conditions over various temporal scales. Here we present the results of 117 U-Th dates from emergent reef flat and slope cores and surface death assemblages, combined with previously published fossil microatoll data, to capture the entire sequence of reef growth at Mazie Bay, inshore Southern Great Barrier Reef (GBR). Coral U-Th dates indicate that Mazie Bay reef initiated ~6,900 years before present (yr. BP) quickly filling accommodation space. While rates of vertical reef accretion (5.3 ± 1.0 mm year−1) were comparable to the GBR average during the mid-Holocene (~5.0 mm year−1), reef flat progradation occurred at a rate 1.5- to 6-fold previous GBR rates until 5,100 yr. BP (~70.4 cm year−1). Average progradation slowed to ~7.1 cm year−1 in the subsequent ~4,000 years and reef slope cores indicate this reef had largely “turned-off” by 400 yr. BP, with modern coral communities existing as a veneer over the largely senescent framework. Death assemblage dates highlight coral disturbance and recovery regimes in response to increased cyclone activity 1960–1985 AD and recent extreme sea surface temperature and flood events post 2000 AD. U-Th dating of mid-Holocene to modern coral deposits from Mazie Bay reef provides a unique insight into past reef development, response to recent disturbance regimes, and potential for future reef growth. In the case of Mazie Bay, our data suggest limited accommodation space and increased occurrence of sea surface temperature extremes will restrict future reef growth at this site

    Ausdruckstanz: tradizioni, traduzioni, tradimenti

    Get PDF
    Long-term data with high-precision chronology are essential to elucidate past ecological changes on coral reefs beyond the period of modern-day monitoring programs. In 2012 we revisited two inshore reefs within the central Great Barrier Reef, where a series of historical photographs document a loss of hard coral cover between c.1890–1994 AD. Here we use an integrated approach that includes high-precision U-Th dating specifically tailored for determining the age of extremely young corals to provide a robust, objective characterisation of ecological transition. The timing of mortality for most of the dead in situ corals sampled from the historical photograph locations was found to coincide with major flood events in 1990–1991 at Bramston Reef and 1970 and 2008 at Stone Island. Evidence of some recovery was found at Bramston Reef with living coral genera similar to what was described in c.1890 present in 2012. In contrast, very little sign of coral re-establishment was found at Stone Island suggesting delayed recovery. These results provide a valuable reference point for managers to continue monitoring the recovery (or lack thereof) of coral communities at these reefs

    Developing a long-term outlook for the Great Barrier Reef, Australia: A framework for adaptive management reporting underpinning an ecosystem-based management approach

    No full text
    The Great Barrier Reef Outlook Report 2009 was the first produced in response to a newly legislated requirement for five-yearly reports on the status of and outlook for the Great Barrier Reef. It adopted an ecosystem approach, assessing all habitats and species, ecosystem processes and major uses. By then considering the factors affecting the ecosystem, coupled with an assessment of management effectiveness, it provided a risk-based forward-looking projection for the ecosystem. Rarely has such a comprehensive, ecosystem-based report been produced to guide government action. With no pre-determined path to follow for interpreting the legislative requirements, the Great Barrier Reef Marine Park Authority (GBRMPA) developed a repeatable structure and method for Great Barrier Reef Outlook Reports that impartially and consistently considers the evidence and clearly presents the findings. The GBRMPA worked closely with relevant Australian and Queensland Government agencies as well as researchers, industry representatives and the community while developing the report. That such a report must be produced every five years allows an overview of the effectiveness of management responses to be regularly assessed. It also provides a transparent means of highlighting and tracking emerging risks facing the Great Barrier Reef.Great Barrier Reef Ecosystem-based management Cumulative impacts Outlook Report Assessments Adaptive management

    Developing a long-term outlook for the Great Barrier Reef, Australia: a framework for adaptive management reporting underpinning an ecosystem based management approach

    No full text
    The Great Barrier Reef Outlook Report 2009 was the first produced in response to a newly legislated requirement for five-yearly reports on the status of and outlook for the Great Barrier Reef. It adopted an ecosystem approach, assessing all habitats and species, ecosystem processes and major uses. By then considering the factors affecting the ecosystem, coupled with an assessment of management effectiveness, a risk-based forward-looking projection for the ecosystem is provided. With no pre-determined path to follow for interpreting the legislative requirements, the GBRMPA developed a structure and method for Great Barrier Reef Outlook Reports that are repeatable and that impartially and consistently consider the evidence and clearly present the findings. The GBRMPA worked closely with relevant Australian and Queensland government agencies as well as researchers, industry representatives and the community when developing the Report. That such a report must be produced every five years allows an overview of the effectiveness of responses to be regularly assessed. It also provides a transparent means of highlighting and tracking emerging risks facing the Great Barrier Reef
    corecore