2 research outputs found

    Using Force Matching To Determine Reactive Force Fields for Water under Extreme Thermodynamic Conditions

    No full text
    We present a method for the creation of classical force fields for water under dissociative thermodynamic conditions by force matching to molecular dynamics trajectories from Kohn–Sham density functional theory (DFT). We apply our method to liquid water under dissociative conditions, where molecular lifetimes are less than 1 ps, and superionic water, where hydrogen ions diffuse at liquid-like rates through an oxygen lattice. We find that, in general, our new models are capable of accurately reproducing the structural and dynamic properties computed from DFT, as well as the molecular concentrations and lifetimes. Overall, our force-matching approach presents a relatively simple way to create classical reactive force fields for a single thermodynamic state point that largely retains the accuracy of DFT while having the potential to access experimental time and length scales

    ChIMES: A Force Matched Potential with Explicit Three-Body Interactions for Molten Carbon

    No full text
    We present a new force field and development scheme for atomistic simulations of materials under extreme conditions. These models, which explicitly include two- and three-body interactions, are generated by fitting linear combinations of Chebyshev polynomials through force matching to trajectories from Kohn–Sham density functional theory (DFT). We apply our method to liquid carbon near the diamond/graphite/liquid triple point and at higher densities and temperatures, where metallization and many-body effects may be substantial. We show that explicit inclusion of three-body interaction terms allows our model to yield improved descriptions of both dynamic and structural properties over previous empirical potential efforts, while exhibiting transferability to nearby state points. The simplicity of our functional form and subsequent efficiency of parameter determination allow for extension of DFT to experimental time and length scales while retaining most of its accuracy
    corecore