3 research outputs found
Safety and efficacy of intravenous infusion of allogeneic cryopreserved mesenchymal stem cells for treatment of chronic kidney disease in cats: results of three sequential pilot studies
INTRODUCTION: Administration of mesenchymal stem cells (MSCs) has been shown to improve renal function in rodent models of chronic kidney disease (CKD), in part by reducing intrarenal inflammation and suppressing fibrosis. CKD in cats is characterized by tubulointerstitial inflammation and fibrosis, and thus treatment with MSCs might improve renal function and urinary markers of inflammation in this disease. Therefore, a series of pilot studies was conducted to assess the safety and efficacy of intravenous administration of allogeneic adipose-derived MSCs (aMSCs) in cats with naturally occurring CKD. METHODS: Cats enrolled in these studies received an intravenous infusion of allogeneic aMSCs every 2 weeks collected from healthy, young, specific pathogen-free cats. Cats in pilot study 1 (six cats) received 2 × 10(6) cryopreserved aMSCs per infusion, cats in pilot study 2 (five cats) received 4 × 10(6) cryopreserved aMSCs per infusion, and cats in pilot study 3 (five cats) received 4 × 10(6) aMSCs cultured from cryopreserved adipose. Serum biochemistry, complete blood count, urinalysis, urine protein, glomerular filtration rate, and urinary cytokine concentrations were monitored during the treatment period. Changes in clinical parameters were compared statistically by means of repeated measures analysis of variance (ANOVA) followed by Bonferroni’s correction. RESULTS: Cats in pilot study 1 had few adverse effects from the aMSC infusions and there was a statistically significant decrease in serum creatinine concentrations during the study period, however the degree of decrease seems unlikely to be clinically relevant. Adverse effects of the aMSC infusion in cats in pilot study 2 included vomiting (2/5 cats) during infusion and increased respiratory rate and effort (4/5 cats). Cats in pilot study 3 did not experience any adverse side effects. Serum creatinine concentrations and glomerular filtration rates did not change significantly in cats in pilot studies 2 and 3. CONCLUSIONS: Administration of cryopreserved aMSCs was associated with significant adverse effects and no discernible clinically relevant improvement in renal functional parameters. Administration of aMSCs cultured from cryopreserved adipose was not associated with adverse effects, but was also not associated with improvement in renal functional parameters
Recommended from our members
Tumor Regulation of Lymph Node Lymphatic Sinus Growth and Lymph Flow in Mice and in Humans
The lymphatic vasculature collects and drains fluid and cells from the periphery through lymph nodes (LNs) for immune monitoring, and then returns lymph to the bloodstream. During immune responses LNs enlarge and remodel, featuring extensive growth of lymphatic sinuses (lymphangiogenesis). This LN lymphangiogenesis also arises in cancer, and is associated with altered lymph drainage through LNs. Studies of mouse solid tumor models identified lymphatic sinus growth throughout tumor-draining LNs (TDLNs), and increased lymph flow through the expanded sinuses. Mice developing B cell lymphomas also feature LN lymphangiogenesis and increased lymph flow, indicating that these changes occur in lymphoma as well as in solid tumors. These LN alterations may be key to promote tumor growth and metastasis to draining LNs and distant organs. Lymphatic sinus growth within the TDLN may suppress anti-tumor-immune responses, and/or the increased lymph drainage could promote metastasis to draining LNs and distant organs. Investigations of human cancers and lymphomas are now identifying TDLN lymphatic sinus growth and increased lymph flow, that correlate with metastasis and poor prognosis. Pathology assessment of TDLN lymphangiogenesis or noninvasive imaging of tumor lymph drainage thus could potentially be useful to assist with diagnosis and treatment decisions. Moreover, the expanded lymphatic sinuses and increased lymph flow could facilitate vaccine or drug delivery, to manipulate TDLN immune functioning or to treat metastases. The insights obtained thus far should encourage further investigation of the mechanisms and consequences of TDLN lymphatic sinus growth and lymph flow alterations in mouse cancer models, and in human cancer patients