42 research outputs found

    Feasibility of a Novel Non-Invasive Swab Technique for Serial Whole-Exome Sequencing of Cervical Tumors During Chemoradiation Therapy

    Get PDF
    BACKGROUND: Clinically relevant genetic predictors of radiation response for cervical cancer are understudied due to the morbidity of repeat invasive biopsies required to obtain genetic material. Thus, we aimed to demonstrate the feasibility of a novel noninvasive cervical swab technique to (1) collect tumor DNA with adequate throughput to (2) perform whole-exome sequencing (WES) at serial time points over the course of chemoradiation therapy (CRT). METHODS: Cervical cancer tumor samples from patients undergoing chemoradiation were collected at baseline, at week 1, week 3, and at the completion of CRT (week 5) using a noninvasive swab-based biopsy technique. Swab samples were analyzed with whole-exome sequencing (WES) with mutation calling using a custom pipeline optimized for shallow whole-exome sequencing with low tumor purity (TP). Tumor mutation changes over the course of treatment were profiled. RESULTS: 216 samples were collected and successfully sequenced for 70 patients (94% of total number of tumor samples collected). A total of 33 patients had a complete set of samples at all four time points. The mean mapping rate was 98% for all samples, and the mean target coverage was 180. Estimated TP was greater than 5% for all samples. Overall mutation frequency decreased during CRT but mapping rate and mean target coverage remained at \u3e98% and \u3e180 reads at week 5. CONCLUSION: This study demonstrates the feasibility and application of a noninvasive swab-based technique for WES analysis which may be applied to investigate dynamic tumor mutational changes during treatment to identify novel genes which confer radiation resistance

    Intratumoral Microbiome of Adenoid Cystic Carcinomas and Comparison With Other Head and Neck Cancers

    Get PDF
    Adenoid cystic carcinoma (ACC) is a rare, usually slow-growing yet aggressive head and neck malignancy. Despite its clinical significance, our understanding of the cellular evolution and microenvironment in ACC remains limited. We investigated the intratumoral microbiomes of 50 ACC tumor tissues and 33 adjacent normal tissues using 16S rRNA gene sequencing. This allowed us to characterize the bacterial communities within the ACC and explore potential associations between the bacterial community structure, patient clinical characteristics, and tumor molecular features obtained through RNA sequencing. The bacterial composition in the ACC was significantly different from that in adjacent normal salivary tissue, and the ACC exhibited diverse levels of species richness. We identified two main microbial subtypes within the ACC: oral-like and gut-like. Oral-like microbiomes, characterized by increased diversity and abundance of Neisseria, Leptotrichia, Actinomyces, Streptococcus, Rothia, and Veillonella (commonly found in healthy oral cavities), were associated with a less aggressive ACC-II molecular subtype and improved patient outcomes. Notably, we identified the same oral genera in oral cancer and head and neck squamous cell carcinomas. In both cancers, they were part of shared oral communities associated with a more diverse microbiome, less aggressive tumor phenotype, and better survival that reveal the genera as potential pancancer biomarkers for favorable microbiomes in ACC and other head and neck cancers. Conversely, gut-like intratumoral microbiomes, which feature low diversity and colonization by gut mucus layer-degrading species, such as Bacteroides, Akkermansia, Blautia, Bifidobacterium, and Enterococcus, were associated with poorer outcomes. Elevated levels of Bacteroides thetaiotaomicron were independently associated with significantly worse survival and positively correlated with tumor cell biosynthesis of glycan-based cell membrane components

    Cervicovaginal Microbiota Profiles in Precancerous Lesions and Cervical Cancer among Ethiopian Women

    Get PDF
    Although high-risk human papillomavirus infection is a well-established risk factor for cervical cancer, other co-factors within the local microenvironment may play an important role in the development of cervical cancer. The current study aimed to characterize the cervicovaginal microbiota in women with premalignant dysplasia or invasive cervical cancer compared with that of healthy women. The study comprised 120 Ethiopian women (60 cervical cancer patients who had not received any treatment, 25 patients with premalignant dysplasia, and 35 healthy women). Cervicovaginal specimens were collected using either an Isohelix DNA buccal swab or an Evalyn brush, and ribosomal RNA sequencing was used to characterize the cervicovaginal microbiota. Shannon and Simpson diversity indices were used to evaluate alpha diversity. Beta diversity was examined using principal coordinate analysis of weighted UniFrac distances. Alpha diversity was significantly higher in patients with cervical cancer than in patients with dysplasia and in healthy women

    Immune Environment and Antigen Specificity of the T Cell Receptor Repertoire of Malignant Ascites in Ovarian Cancer

    Get PDF
    We evaluated the association of disease outcome with T cell immune-related characteristics and T cell receptor (TCR) repertoire in malignant ascites from patients with high-grade epithelial ovarian cancer. Ascitic fluid samples were collected from 47 high-grade epithelial ovarian cancer patients and analyzed using flow cytometry and TCR sequencing to characterize the complementarity determining region 3 TCR β-chain. TCR functions were analyzed using the McPAS-TCR and VDJ databases. TCR clustering was implemented using Grouping of Lymphocyte Interactions by Paratope Hotspots software. Patients with poor prognosis had ascites characterized by an increased ratio of CD8+ T cells to regulatory T cells, which correlated with an increased productive frequency of the top 100 clones and decreased productive entropy. TCRs enriched in patients with an excellent or good prognosis were more likely to recognize cancer antigens and contained more TCR reads predicted to recognize epithelial ovarian cancer antigens. In addition, a TCR motif that is predicted to bind the TP53 neoantigen was identified, and this motif was enriched in patients with an excellent or good prognosis. Ascitic fluid in high-grade epithelial ovarian cancer patients with an excellent or good prognosis is enriched with TCRs that may recognize ovarian cancer-specific neoantigens, including mutated TP53 and TEAD1. These results suggest that an effective antigen-specific immune response in ascites is vital for a good outcome in high-grade epithelial ovarian cancer

    Biology Open

    Get PDF
    Early phase diabetes is often accompanied by pain sensitization. In Drosophila, the insulin receptor (InR) regulates the persistence of injury-induced thermal nociceptive sensitization. Whether Drosophila InR also regulates the persistence of mechanical nociceptive sensitization remains unclear. Mice with a sensory neuron deletion of the insulin receptor (Insr) show normal nociceptive baselines; however, it is uncertain whether deletion of Insr in nociceptive sensory neurons leads to persistent nociceptive hypersensitivity. In this study, we used fly and mouse nociceptive sensitization models to address these questions. In flies, InR mutants and larvae with sensory neuron-specific expression of RNAi transgenes targeting InR exhibited persistent mechanical hypersensitivity. Mice with a specific deletion of the Insr gene in Nav1.8+ nociceptive sensory neurons showed nociceptive thermal and mechanical baselines similar to controls. In an inflammatory paradigm, however, these mutant mice showed persistent mechanical (but not thermal) hypersensitivity, particularly in female mice. Mice with the Nav1.8+ sensory neuron-specific deletion of Insr did not show metabolic abnormalities typical of a defect in systemic insulin signaling. Our results show that some aspects of the regulation of nociceptive hypersensitivity by the insulin receptor are shared between flies and mice and that this regulation is likely independent of metabolic effects

    Metagenomes of Rectal Swabs in Larger, Advanced Stage Cervical Cancers Have Enhanced Mucus Degrading Functionalities and Distinct Taxonomic Structure

    Get PDF
    BACKGROUND: Gut microbiome community composition differs between cervical cancer (CC) patients and healthy controls, and increased gut diversity is associated with improved outcomes after treatment. We proposed that functions of specific microbial species adjoining the mucus layer may directly impact the biology of CC. METHOD: Metagenomes of rectal swabs in 41 CC patients were examined by whole-genome shotgun sequencing to link taxonomic structures, molecular functions, and metabolic pathway to patient\u27s clinical characteristics. RESULTS: Significant association of molecular functions encoded by the metagenomes was found with initial tumor size and stage. Profiling of the molecular function abundances and their distributions identified 2 microbial communities co-existing in each metagenome but having distinct metabolism and taxonomic structures. Community A (Clostridia and Proteobacteria predominant) was characterized by high activity of pathways involved in stress response, mucus glycan degradation and utilization of degradation byproducts. This community was prevalent in patients with larger, advanced stage tumors. Conversely, community B (Bacteroidia predominant) was characterized by fast growth, active oxidative phosphorylation, and production of vitamins. This community was prevalent in patients with smaller, early-stage tumors. CONCLUSIONS: In this study, enrichment of mucus degrading microbial communities in rectal metagenomes of CC patients was associated with larger, more advanced stage tumors

    HPV-Related Anal Cancer Is Associated With Changes in the Anorectal Microbiome During Cancer Development

    Get PDF
    BACKGROUND: Squamous cell carcinoma of the anus (SCCA) is a rare gastrointestinal cancer. Factors associated with progression of HPV infection to anal dysplasia and cancer are unclear and screening guidelines and approaches for anal dysplasia are less clear than for cervical dysplasia. One potential contributing factor is the anorectal microbiome. In this study, we aimed to identify differences in anal microbiome composition in the settings of HPV infection, anal dysplasia, and anal cancer in this rare disease. METHODS: Patients were enrolled in two prospective studies. Patients with anal dysplasia were part of a cross-sectional cohort that enrolled women with high-grade lower genital tract dysplasia. Anorectal tumor swabs were prospectively collected from patients with biopsy-confirmed locally advanced SCCA prior to receiving standard-of-care chemoradiotherapy (CRT). Patients with high-grade lower genital tract dysplasia without anal dysplasia were considered high-risk (HR Normal). 16S V4 rRNA Microbiome sequencing was performed for anal swabs. Alpha and Beta Diversity and composition were compared for HR Normal, anal dysplasia, and anal cancer. RESULTS: 60 patients with high-grade lower genital tract dysplasia were initially enrolled. Seven patients had concurrent anal dysplasia and 44 patients were considered HR Normal. Anorectal swabs from 21 patients with localized SCCA were included, sequenced, and analyzed in the study. Analysis of weighted and unweighted UniFrac distances demonstrated significant differences in microbial community composition between anal cancer and HR normal (p CONCLUSION: Although alpha diversity was similar between HR Normal, dysplasia and cancer patients, composition differed significantly between the three groups. Increased anorecta

    Tumor-Resident Lactobacillus iners Confer Chemoradiation Resistance Through Lactate-Induced Metabolic Rewiring

    Get PDF
    Tumor microbiota can produce active metabolites that affect cancer and immune cell signaling, metabolism, and proliferation. Here, we explore tumor and gut microbiome features that affect chemoradiation response in patients with cervical cancer using a combined approach of deep microbiome sequencing, targeted bacterial culture, and in vitro assays. We identify that an obligate L-lactate-producing lactic acid bacterium found in tumors, Lactobacillus iners, is associated with decreased survival in patients, induces chemotherapy and radiation resistance in cervical cancer cells, and leads to metabolic rewiring, or alterations in multiple metabolic pathways, in tumors. Genomically similar L-lactate-producing lactic acid bacteria commensal to other body sites are also significantly associated with survival in colorectal, lung, head and neck, and skin cancers. Our findings demonstrate that lactic acid bacteria in the tumor microenvironment can alter tumor metabolism and lactate signaling pathways, causing therapeutic resistance. Lactic acid bacteria could be promising therapeutic targets across cancer types
    corecore