7 research outputs found
Third party interpretation of raw genetic data: an ethical exploration
In the wake of recent regulations targeting direct-to-consumer genetic testing (DTC-GT), an increasing number of websites have emerged that offer consumers alternative means to derive health information from their DTC-GT raw data. While the ethical concerns associated with DTC-GT have been extensively discussed in the literature, the implications of third party interpretation (TPI) websites have remained largely unexplored. Here we sought to describe these services and elucidate their ethical implications in the context of the current DTC-GT debate. We reviewed five popular TPI websites that use SNP-based genomic data to report health-related information: Promethease, Interpretome, LiveWello, Codegen.eu, and Enlis Personal. We found that many of the ethical concerns previously described in DTC-GT also applied to TPI websites, including inadequate informed consent, questionable clinical validity and utility, and lack of medical supervision. However, some concerns about data usage and privacy reported in DTC-GT were less prominent in the five TPI websites we studied: none of them sold or shared user data, and 3/5 sites did not retain data in the long term. In addition, while exaggerated claims and inaccurate advertising have been frequently problematic in DTC-GT, advertising was minimal in the TPI sites we assessed, and 4/5 made no claims of health benefits. Overall, TPI adds a new dimension to the ethical debate surrounding DTC-GT, and awareness of these services will become increasingly important as personal genomics continues to expand. This study constitutes the first detailed ethical analysis of these services, and presents a starting point for further research and ethical reflection.European Journal of Human Genetics advance online publication, 23 August 2017; doi:10.1038/ejhg.2017.126.status: publishe
Ethical considerations for genetic testing in the context of mandated cardiac screening before athletic participation
status: publishe
Activating RAC1 variants in the switch II region cause a developmental syndrome and alter neuronal morphology
RAC1 is a highly conserved Rho GTPase critical for many cellular and developmental processes. De novo missense RAC1 variants cause a highly variable neurodevelopmental disorder. Some of these variants have previously been shown to have a dominant negative effect. Most previously reported patients with this disorder have either severe microcephaly or severe macrocephaly. Here, we describe eight patients with pathogenic missense RAC1 variants affecting residues between Q61 and R68 within the switch II region of RAC1. These patients display variable combinations of developmental delay, intellectual disability, brain anomalies such as polymicrogyria and cardiovascular defects with normocephaly or relatively milder micro- or macrocephaly. Pulldown assays, NIH3T3 fibroblast spreading assays and staining for activated PAK1/2/3 and WAVE2 suggest that these variants increase RAC1 activity and over-activate downstream signalling targets. Axons of neurons isolated from Drosophila embryos expressing the most common of the activating variants are significantly shorter, with an increased density of filopodial protrusions. In vivo, these embryos exhibit frequent defects in axonal organization. Class IV dendritic arborization neurons expressing this variant exhibit a significant reduction in the total area of the dendritic arbour, increased branching and failure of self-avoidance. RNAi knock down of the WAVE regulatory complex component Cyfip significantly rescues these morphological defects. These results establish that activating substitutions affecting residues Q61-R68 within the switch II region of RAC1 cause a developmental syndrome. Our findings reveal that these variants cause altered downstream signalling, resulting in abnormal neuronal morphology and reveal the WAVE regulatory complex/Arp2/3 pathway as a possible therapeutic target for activating RAC1 variants. These insights also have the potential to inform the mechanism and therapy for other disorders caused by variants in genes encoding other Rho GTPases, their regulators and downstream effectors