5 research outputs found

    MOESM5 of Identification and characterization of putative xylose and cellobiose transporters in Aspergillus nidulans

    No full text
    Additional file 5. Genomic DNA from the A. nidulans wild-type, ΔxtrG (AN8347), ΔxtrH (AN9173), ΔcltB (AN2814) and the double ΔcltA ΔcltB strains was extracted and digested with different restriction enzymes to confirm the deletion strains. Diagram (A.) and Southern blot (B.) of the wild-type and ΔxtrG strains when digested with SacI. A 1-kb DNA fragment from the xtrG 3′UTR (untranslated) region was used as a hybridization probe. The probe recognizes a single 10.0-kb band in the wild-type strain and a single 6.4-kb band in the ΔxtrG strain. Diagram (C.) and Southern blot (D.) of the wild-type and ΔxtrH strains when digested with EcoRI. A 1-kb DNA fragment from the xtrH 5′UTR (untranslated) region was used as a hybridization probe. The probe recognizes a single 3.4-kb band in the wild-type strain and a single 3.0-kb band in the ΔxtrH strain. Diagram (E.) and Southern blot (F.) of the wild-type and ΔcltB strains when digested with XbaI. A 1-kb DNA fragment from the cltB 5′UTR (untranslated) region was used as a hybridization probe. The probe recognizes a single 2.0-kb band in the wild-type strain and a single 3.3-kb band in the ΔcltB strain. Diagram (G.) and Southern blot (H.) of the wild-type and ΔcltA ΔcltB strains when digested with KpnI. A 1-kb DNA fragment from the cltB 3′UTR (untranslated) region was used as a hybridization probe. The probe recognizes a single 2.0-kb band in the wild-type strain and a single 2.5-kb band in the ΔxtrG strain

    MOESM2 of RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose

    No full text
    Additional file 2: Figure S1. The absence of hydrophobins has minor influence on hydrolytic enzyme transcription. The transcription of cbhA and xlnA during SSF of SEB was moderately increased in the individual absence of RodA or DewC
    corecore