5 research outputs found

    Heralded Entanglement between Atomic Ensembles: Preparation, Decoherence, and Scaling

    Get PDF
    Heralded entanglement between collective excitations in two atomic ensembles is probabilistically generated, stored, and converted to single photon fields. By way of the concurrence, quantitative characterizations are reported for the scaling behavior of entanglement with excitation probability and for the temporal dynamics of various correlations resulting in the decay of entanglement. A lower bound of the concurrence for the collective atomic state of 0.9\pm 0.3 is inferred. The decay of entanglement as a function of storage time is also observed, and related to the local dynamics.Comment: 4 page

    Quantum Networking with Atomic Ensembles in the Single Excitation Regime

    Get PDF
    Quantum networks hold the promise for revolutionary advances in information processing with entanglement distributed over remote locations via quantum repeaters. We report two milestones in this direction: the conditional control of memories and the implementation of functional nodes

    Towards experimental entanglement connection with atomic ensembles in the single excitation regime

    Get PDF
    We present a protocol for performing entanglement connection between pairs of atomic ensembles in the single excitation regime. Two pairs are prepared in an asynchronous fashion and then connected via a Bell measurement. The resulting state of the two remaining ensembles is mapped to photonic modes and a reduced density matrix is then reconstructed. Our observations confirm for the first time the creation of coherence between atomic systems that never interacted, a first step towards entanglement connection, a critical requirement for quantum networking and long distance quantum communications

    Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks

    Get PDF
    We demonstrate entanglement distribution between two remote quantum nodes located 3 meters apart. This distribution involves the asynchronous preparation of two pairs of atomic memories and the coherent mapping of stored atomic states into light fields in an effective state of near maximum polarization entanglement. Entanglement is verified by way of the measured violation of a Bell inequality, and can be used for communication protocols such as quantum cryptography. The demonstrated quantum nodes and channels can be used as segments of a quantum repeater, providing an essential tool for robust long-distance quantum communication.Comment: 10 pages, 7 figures. Text revised, additional information included in Appendix. Published online in Science Express, 5 April, 200
    corecore