46 research outputs found

    Effects of dietary beef tallow and soy oil of glucose and cholesterol homeostasis in normal and diabetic pigs

    Get PDF
    To evaluate whether dietary fats of different degrees of unsaturation alter glucose and very low density lipoprotein-cholesterol (VLDL-CH) homeostasis, normal and alloxan-diabetic pigs were fed diets containing either beef tallow or soy oil as the primary source of fat for 6 weeks. After intra-arterial and oral doses of glucose, pigs fed soy oil had similar glucose and greater insulin concentrations in plasma when compared with pigs fed beef tallow. Beef tallow-fed pigs additionally were 40% more glucose effective than were soy oil-fed pigs. Concentrations of triglyceride, free fatty acid, and gastric inhibitory polypeptide in plasma were measured after consumption of a meal and did not vary between dietary treatments in normal pigs. Diabetic pigs fed soy oil, however, had greater concentrations of gastric inhibitory polypeptide after a meal than did those fed beef tallow;Disappearance of injected autologous (\u2714)C-VLDL-CH was analyzed in pigs using a two-pool model. Diabetes resulted in a twofold increase in half-lives and a 60-fold increase in pool sizes of the primary and secondary components of VLDL-CH disappearance when compared with those of normal pigs. In normal pigs, feeding beef tallow resulted in longer half-lives of both components of VLDL-CH disappearance and no effect in pool size of both components of VLDL-CH disappearance than did feeding soy oil. In comparison, diabetic pigs fed beef tallow had a similar half-life of the primary component, a twofold shorter half-life of the secondary component, and threefold larger pool size of the primary component, and a similar pool size of the secondary component of VLDL-CH disappearance than did diabetic pigs fed soy oil. Accretion of plasma cholesterol in liver, heart, aorta, skeletal muscle, and adipose tissue was 1.5 to 2 times greater in diabetic than in normal pigs, and net transfer rate of plasma cholesterol was greater only in liver of diabetic when compared with normal pigs. Thus, dietary fat seems to play an important role in regulation of glucose and VLDL-CH homeostasis in normal and diabetic animals

    Maternal plasma lipid levels across pregnancy and the risks of small-for-gestational age and low birth weight: a cohort study from rural Gambia.

    Get PDF
    BACKGROUND: Sub-optimal maternal lipid levels during pregnancy may be implicated in the pathophysiological mechanisms leading to low birth weight (LBW) and small-for-gestational-age (SGA). We aimed to determine whether maternal lipid levels across pregnancy were associated with birth weight and the risks of LBW and SGA in rural Gambia. METHODS: This secondary analysis of the ENID trial involved 573 pregnant women with term deliveries. Plasma levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), and triglycerides (TG) were analyzed at enrolment (mean (SD) = 13.9 (3.3) weeks gestation), 20 and 30 weeks gestation as continuous variables and percentile groups. Regression models with adjustment for confounders were used to examine associations between gestational lipid levels and birth weight and the risks of LBW (birth weight 90th percentile) LDL-c at 30 weeks gestation was associated with a 55% lower risk of SGA compared with referent LDL-c (P = 0.017). Increased levels of TC (β = 1.3, P = 0.027) at 20 weeks gestation and of TC (β = 1.2, P = 0.006) and LDL-c (β = 1.5, P = 0.002) at 30 weeks gestation were all associated with higher birth weight. CONCLUSIONS: In rural Gambia, lipid levels during pregnancy were associated with infant birth weight and the risks of LBW and SGA. Associations varied by lipid class and changed across pregnancy, indicating an adaptive process by which maternal lipids may influence fetal growth and birth outcomes. TRIAL REGISTRATION: This trial was registered as ISRCTN49285450 on: 12/11/2009

    A high throughput live transparent animal bioassay to identify non-toxic small molecules or genes that regulate vertebrate fat metabolism for obesity drug development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The alarming rise in the obesity epidemic and growing concern for the pathologic consequences of the metabolic syndrome warrant great need for development of obesity-related pharmacotherapeutics. The search for such therapeutics is severely limited by the slow throughput of animal models of obesity. Amenable to placement into a 96 well plate, zebrafish larvae have emerged as one of the highest throughput vertebrate model organisms for performing small molecule screens. A method for visually identifying non-toxic molecular effectors of fat metabolism using a live transparent vertebrate was developed. Given that increased levels of nicotinamide adenine dinucleotide (NAD) via deletion of CD38 have been shown to prevent high fat diet induced obesity in mice in a SIRT-1 dependent fashion we explored the possibility of directly applying NAD to zebrafish.</p> <p>Methods</p> <p>Zebrafish larvae were incubated with daily refreshing of nile red containing media starting from a developmental stage of equivalent fat content among siblings (3 days post-fertilization, dpf) and continuing with daily refreshing until 7 dpf.</p> <p>Results</p> <p>PPAR activators, beta-adrenergic agonists, SIRT-1 activators, and nicotinic acid treatment all caused predicted changes in fat, cholesterol, and gene expression consistent with a high degree of evolutionary conservation of fat metabolism signal transduction extending from man to zebrafish larvae. All changes in fat content were visually quantifiable in a relative fashion using live zebrafish larvae nile red fluorescence microscopy. Resveratrol treatment caused the greatest and most consistent loss of fat content. The resveratrol tetramer Vaticanol B caused loss of fat equivalent in potency to resveratrol alone. Significantly, the direct administration of NAD decreased fat content in zebrafish. Results from knockdown of a zebrafish G-PCR ortholog previously determined to decrease fat content in <it>C. elegans </it>support that future GPR142 antagonists may be effective non-toxic anti-obesity therapeutics.</p> <p>Conclusion</p> <p>Owing to the apparently high level of evolutionary conservation of signal transduction pathways regulating lipid metabolism, the zebrafish can be useful for identifying non-toxic small molecules or pharmacological target gene products for developing molecular therapeutics for treating clinical obesity. Our results support the promising potential in applying NAD or resveratrol where the underlying target protein likely involves Sirtuin family member proteins. Furthermore data supports future studies focused on determining whether there is a high concentration window for resveratrol that is effective and non-toxic in high fat obesity murine models.</p

    Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span

    Get PDF
    22 páginas, 4 figuras.A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging, including reduced albuminuria, decreased inflammation, and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started midlife.This work was supported by grants from the American Heart Association (0425834T to J.A.B. and 0435140N to A.C.) and from the NIH (RO1GM068072, AG19972, and AG19719 to D.A.S.), (HL077256 to Z.U.), (HD034089 to L.W), (2RO1 EY011733 to N.S.W.), Spanish grant (BFU2005-03017 to P.N.), and by the generous support of Mr. Paul F. Glenn and The Paul F. Glenn Laboratories for the Biological Mechanisms of Aging.Peer reviewe

    HacA-Independent Functions of the ER Stress Sensor IreA Synergize with the Canonical UPR to Influence Virulence Traits in Aspergillus fumigatus

    Get PDF
    Endoplasmic reticulum (ER) stress is a condition in which the protein folding capacity of the ER becomes overwhelmed by an increased demand for secretion or by exposure to compounds that disrupt ER homeostasis. In yeast and other fungi, the accumulation of unfolded proteins is detected by the ER-transmembrane sensor IreA/Ire1, which responds by cleaving an intron from the downstream cytoplasmic mRNA HacA/Hac1, allowing for the translation of a transcription factor that coordinates a series of adaptive responses that are collectively known as the unfolded protein response (UPR). Here, we examined the contribution of IreA to growth and virulence in the human fungal pathogen Aspergillus fumigatus. Gene expression profiling revealed that A. fumigatus IreA signals predominantly through the canonical IreA-HacA pathway under conditions of severe ER stress. However, in the absence of ER stress IreA controls dual signaling circuits that are both HacA-dependent and HacA-independent. We found that a ΔireA mutant was avirulent in a mouse model of invasive aspergillosis, which contrasts the partial virulence of a ΔhacA mutant, suggesting that IreA contributes to pathogenesis independently of HacA. In support of this conclusion, we found that the ΔireA mutant had more severe defects in the expression of multiple virulence-related traits relative to ΔhacA, including reduced thermotolerance, decreased nutritional versatility, impaired growth under hypoxia, altered cell wall and membrane composition, and increased susceptibility to azole antifungals. In addition, full or partial virulence could be restored to the ΔireA mutant by complementation with either the induced form of the hacA mRNA, hacAi, or an ireA deletion mutant that was incapable of processing the hacA mRNA, ireAΔ10. Together, these findings demonstrate that IreA has both HacA-dependent and HacA-independent functions that contribute to the expression of traits that are essential for virulence in A. fumigatus

    Effects of dietary beef tallow and soy oil of glucose and cholesterol homeostasis in normal and diabetic pigs

    No full text
    To evaluate whether dietary fats of different degrees of unsaturation alter glucose and very low density lipoprotein-cholesterol (VLDL-CH) homeostasis, normal and alloxan-diabetic pigs were fed diets containing either beef tallow or soy oil as the primary source of fat for 6 weeks. After intra-arterial and oral doses of glucose, pigs fed soy oil had similar glucose and greater insulin concentrations in plasma when compared with pigs fed beef tallow. Beef tallow-fed pigs additionally were 40% more glucose effective than were soy oil-fed pigs. Concentrations of triglyceride, free fatty acid, and gastric inhibitory polypeptide in plasma were measured after consumption of a meal and did not vary between dietary treatments in normal pigs. Diabetic pigs fed soy oil, however, had greater concentrations of gastric inhibitory polypeptide after a meal than did those fed beef tallow;Disappearance of injected autologous ('14)C-VLDL-CH was analyzed in pigs using a two-pool model. Diabetes resulted in a twofold increase in half-lives and a 60-fold increase in pool sizes of the primary and secondary components of VLDL-CH disappearance when compared with those of normal pigs. In normal pigs, feeding beef tallow resulted in longer half-lives of both components of VLDL-CH disappearance and no effect in pool size of both components of VLDL-CH disappearance than did feeding soy oil. In comparison, diabetic pigs fed beef tallow had a similar half-life of the primary component, a twofold shorter half-life of the secondary component, and threefold larger pool size of the primary component, and a similar pool size of the secondary component of VLDL-CH disappearance than did diabetic pigs fed soy oil. Accretion of plasma cholesterol in liver, heart, aorta, skeletal muscle, and adipose tissue was 1.5 to 2 times greater in diabetic than in normal pigs, and net transfer rate of plasma cholesterol was greater only in liver of diabetic when compared with normal pigs. Thus, dietary fat seems to play an important role in regulation of glucose and VLDL-CH homeostasis in normal and diabetic animals.</p

    Kinetic Parameters for High Density Lipoprotein Apoprotein AI and Cholesteryl Ester Transport in the Hamster

    No full text
    These studies were undertaken to determine the kinetic characteristics of high density lipoprotein (HDL) apo AI and cholesteryl ester transport in the hamster in vivo. Saturable HDL apo AI transport was demonstrated in the kidneys, adrenal glands, and liver. Saturable HDL cholesteryl ester transport was highest in the adrenal glands and liver. In the liver and adrenal glands, maximal transport rates (J m) for receptor dependent uptake were similar for the protein and cholesteryl ester moieties; however, the concentration of HDL necessary to achieve half-maximal transport (K m) was 20- to 30-fold higher for apo AI. Consequently, at normal plasma HDL concentrations, the clearance of HDL cholesteryl ester exceeded that of HDL apo AI by � 10-fold in the adrenal glands and by approximately fivefold in the liver. At normal HDL concentrations, the majority of HDL cholesteryl ester (76%) was cleared by the liver whereas the majority of HDL apo AI (77%) was cleared by extrahepatic tissues. The rate of HDL cholesteryl ester uptake by the liver equaled the rate of cholesterol acquisition by all extrahepatic tissues suggesting that HDL cholesteryl ester uptake by the liver accurately reflects the rate of “reverse cholesterol transport. ” Receptor dependent HDL cholesteryl ester uptake by the liver was maximal (saturated) at normal plasma HDL concentrations. Consequently, changes in plasma HDL concentrations are not accompanied by parallel changes in the delivery of HDL cholesteryl ester to the liver unless the number or affinity of transporters is also regulated. (J. Clin. Invest. 1997. 99:1704–1713.) Key words: HDL • apoprotein AI • cholesteryl ester transport • reverse cholesterol transpor
    corecore