115 research outputs found

    Direct evidence of the molecular basis for biological silicon transport

    Get PDF
    Diatoms are an important group of eukaryotic algae with a curious evolutionary innovation: they sheath themselves in a cell wall made largely of silica. The cellular machinery responsible for silicification includes a family of membrane permeases that recognize and actively transport the soluble precursor of biosilica, silicic acid. However, the molecular basis of silicic acid transport remains obscure. Here, we identify experimentally tractable diatom silicic acid transporter (SIT) homologues and study their structure and function in vitro, enabled by the development of a new fluorescence method for studying substrate transport kinetics. We show that recombinant SITs are Na(+)/silicic acid symporters with a 1:1 protein: substrate stoichiometry and K(M) for silicic acid of 20 μM. Protein mutagenesis supports the long-standing hypothesis that four conserved GXQ amino acid motifs are important in SIT function. This marks a step towards a detailed understanding of silicon transport with implications for biogeochemistry and bioinspired materials

    Sympathetic-transduction in untreated hypertension

    Get PDF
    Transduction of muscle sympathetic nerve activity (MSNA) into vascular tone varies with age and sex. Older normotensive men have reduced sympathetic transduction so that a given level of MSNA causes less arteriole vasoconstriction. Whether sympathetic transduction is altered in hypertension (HTN) is not known. We investigated whether sympathetic transduction is impaired in untreated hypertensive men compared to normotensive controls. Eight untreated hypertensive men and 10 normotensive men (age 50 ± 15 years vs. 45 ± 12 years (mean ± SD); p = 0.19, body mass index (BMI) 24.7 ± 2.7 kg/m(2) vs. 26.0 ± 4.2 kg/m(2); p = 0.21) were recruited. MSNA was recorded from the peroneal nerve using microneurography; beat-to-beat blood pressure (BP; Finapres) and heart rate (ECG) were recorded simultaneously at rest for 10 min. Sympathetic-transduction was quantified using a previously described method. The relationship between MSNA burst area and subsequent diastolic BP was measured for each participant with the slope of the regression indicating sympathetic transduction. MSNA was higher in the hypertensive group compared to normotensives (73 ± 17 bursts/100 heartbeats vs. 49 ± 19 bursts/100 heart bursts; p = 0.007). Sympathetic-transduction was lower in the hypertensive versus normotensive group (0.04%/mmHg/s vs. 0.11%/mmHg/s, respectively; R = 0.622; p = 0.006). In summary, hypertensive men had lower sympathetic transduction compared to normotensive individuals suggesting that higher levels of MSNA are needed to cause the same level of vasoconstrictor tone

    Is High Blood Pressure Self-Protection for the Brain?

    Get PDF
    Rationale: Data from animal models of hypertension indicate that high blood pressure may develop as a vital mechanism to maintain adequate blood flow to the brain. We propose that congenital vascular abnormalities of the posterior cerebral circulation and cerebral hypoperfusion could partially explain the etiology of essential hypertension, which remains enigmatic in 95% of patients. Objective: To evaluate the role of the cerebral circulation in the pathophysiology of hypertension. Methods and Results: We completed a series of retrospective and mechanistic case-control magnetic resonance imaging and physiological studies, in normotensive and hypertensive humans (n=259). Interestingly, in humans with hypertension, we report a higher prevalence of congenital cerebrovascular variants; vertebral artery hypoplasia and an incomplete posterior circle of Willis, which were coupled with increased cerebral vascular resistance, reduced cerebral blood flow and a higher incidence of lacunar type infarcts. Causally, cerebral vascular resistance was elevated before the onset of hypertension and elevated sympathetic nerve activity (n=126). Interestingly, untreated hypertensive patients (n=20) had a cerebral blood flow similar to age-matched controls (n=28). However, participants receiving anti-hypertensive therapy (with blood pressure controlled below target levels) had reduced cerebral perfusion (n=19). Finally, elevated cerebral vascular resistance was a predictor of hypertension suggesting it may be a novel prognostic and/or diagnostic marker (n=126). < Conclusions: Our data indicate that congenital cerebrovascular variants in the posterior circulation and the associated cerebral hypoperfusion may be a factor in triggering hypertension. Therefore lowering blood pressure may worsen cerebral perfusion in susceptible individuals

    Controversies Surrounding Renal Denervation:Lessons Learned From Real-World Experience in Two United Kingdom Centers

    Get PDF
    Renal denervation (RDN) is a therapy that targets treatment‐resistant hypertension (TRH). The Renal Denervation in Patients With Uncontrolled Hypertension (Symplicity) HTN‐1 and Symplicity HTN‐2 trials reported response rates of >80%; however, sham‐controlled Symplicity HTN‐3 failed to reach its primary blood pressure (BP) outcome. The authors address the current controversies surrounding RDN, illustrated with real‐world data from two centers in the United Kingdom. In this cohort, 52% of patients responded to RDN, with a 13±32 mm Hg reduction in office systolic BP (SBP) at 6 months (n=29, P=.03). Baseline office SBP and number of ablations correlated with office SBP reduction (R=−0.47, P=.01; R=−0.56, P=.002). RDN appears to be an effective treatment for some patients with TRH; however, individual responses are highly variable. Selecting patients for RDN is challenging, with only 10% (33 of 321) of the screened patients eligible for the study. Medication alterations and nonadherence confound outcomes. Adequate ablation is critical and should impact future catheter design/training. Markers of procedural success and improved patient selection parameters remain key research aims
    corecore