23 research outputs found

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Improved cartilage repair after treatment with low-intensity pulsed ultrasound

    No full text
    Low-intensity pulsed ultrasound accelerates bone healing via upregulation of cartilage formation and maturation phases of endchondral bone formation. The current authors evaluated the effect of ultrasound therapy on the repair of full-thickness osteochondral defects. Bilateral, 3.2 mm diameter by 5.0 mm deep osteochondral defects were created in the patellar groove of 106 adult male New Zealand rabbits. The defects were treated with daily low-intensity pulsed ultrasound therapy on the right knee. The left knee was not treated. In Part I, the effect of ultrasound therapy was evaluated at 4, 8, 12, 24, and 52 weeks after surgery. In Part II, the effect of the length of treatment (5, 10, or 40 minutes of daily ultrasound therapy) compared with standard 20 minute therapy was evaluated. The repair cartilage was evaluated and graded on a standard scale for the gross and histologic appearance. Ultrasound treatment significantly improved the morphologic features and histologic characteristics of the repair cartilage compared with nontreated controls. Earlier, better repair with less degenerative changes at later times was observed in defects treated with ultrasound. Doubling the treatment time to 40 minutes daily significantly increased the histologic quality of the repair cartilage. In the current animal model, daily low-intensity pulsed ultrasound had a significant positive effect on the healing of osteochondral defects

    Relaxin Induces Rapid Dilation of Rodent Small Renal and Human Subcutaneous Arteries via PI3 Kinase and Nitric Oxide

    No full text
    The peptide hormone relaxin is a potent vasodilator with therapeutic potential in diseases complicated by vasoconstriction, including heart failure. However, the molecular mediators and magnitude of vasodilation may vary according to duration of exposure and artery type. The objective of these studies was to determine mechanisms of rapid (within minutes) relaxin-induced vasodilation and to examine whether relaxin dilates arteries from different animal species and vascular beds. Rat and mouse small renal, rat mesenteric, and human sc arteries were isolated, mounted in a pressure arteriograph, and treated with recombinant human relaxin (rhRLX; 1–100 ng/ml) after preconstriction with phenylephrine. Rat and mouse small renal as well as human sc arteries dilated in response to rhRLX, whereas rat mesenteric arteries did not. Endothelial removal or pretreatment with l-NG-monomethyl arginine (L-NMMA) abolished rapid relaxin-induced vasodilation; phosphatidylinositol-3-kinase (PI3K) inhibitors also prevented it. In cultured human endothelial cells, rhRLX stimulated nitric oxide (assessed using 4-amino-5-methylamino-2′7′-difluorofluorescein) as well as Akt and endothelial NO synthase (eNOS) phosphorylation by Western blotting but not increases in intracellular calcium (evaluated by fura-2). NO production was attenuated by inhibition of Gαi/o and Akt (using pertussis toxin and the allosteric inhibitor MK-2206, respectively), PI3K, and NOS. Finally, the dilatory effect of rhRLX in rat small renal arteries was unexpectedly potentiated, rather than inhibited, by pretreatment with the vascular endothelial growth factor receptor inhibitor SU5416. We conclude that relaxin rapidly dilates select arteries across a range of species. The mechanism appears to involve endothelial Gαi/o protein coupling to PI3K, Akt, and eNOS but not vascular endothelial growth factor receptor transactivation or increased calcium
    corecore