22 research outputs found

    Age related diffusion and tractography changes in typically developing pediatric cervical and thoracic spinal cord

    Get PDF
    Background and objective: Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) are two techniques that can measure white matter integrity of the spinal cord. Recently, DTI indices have been shown to change with age. The purpose of this study is (a) to evaluate the maturational states of the entire pediatric spinal cord using DTI and DTT indices including fractional anisotropy (FA), mean diffusivity (MD), mean length of white matter fiber tracts and tract density and (b) to analyze the DTI and DTT parameters along the entire spinal cord as a function of spinal cord levels and age. Method: A total of 23 typically developing (TD) pediatric subjects ranging in age from 6 to 16 years old (11.94 ± 3.26 (mean ± standard deviation), 13 females and 10 males) were recruited, and scanned using 3.0 T MR scanner. Reduced FOV diffusion tensor images were acquired axially in the same anatomical location prescribed for the T2-weighted images to cover the entire spinal cord (C1-mid L1 levels). To mitigate motion induced artifacts, diffusion directional images were aligned with the reference image (b0) using a rigid body registration algorithm performed by in-house software developed in Matlab (MathWorks, Natick, Massachusetts). Diffusion tensor maps (FA and MD) and streamline deterministic tractography were then generated from the motion corrected DTI dataset. DTI and DTT parameters were calculated by using ROIs drawn to encapsulate the whole cord along the entire spinal cord by an independent board certified neuroradiologist. These indices then were compared between two age groups (age group A = 6–11 years (n = 11) and age group B = 12–16 years (n = 12)) based on similar standards and age definitions used for reporting spinal cord injury in the pediatric population. Standard least squared linear regression based on a restricted maximum likelihood (REML) method was used to evaluate the relationship between age and DTI and DTT parameters. Results: An increase in FA (group A = 0.42 ± 0.097, group B = 0.49 ± 0.116), white matter tract density (group A = 368.01 ± 236.88, group B = 440.13 ± 245.24) and mean length of fiber tracts (group A = 48.16 ± 20.48 mm, group B = 60.28 ± 23.87 mm) and a decrease in MD (group A = 1.06 ± 0.23 × 10−3 mm2/s, group B = 0.82 ± 0.24 × 10−3 mm2/s) were observed with age along the entire spinal cord. Statistically significant increases have been shown in FA (p = 0.004, R2 = 0.57), tract density (p = 0.0004, R2 = 0.58), mean length of fiber tracts (p \u3c 0.001, R2 = 0.5) and a significant decrease has been shown in MD (p = 0.002, R2 = 0.59) between group A and group B. Also, it has been shown DTI and DTT parameters vary along the spinal cord as a function of intervertebral disk and mid-vertebral body level. Conclusion: This study provides an initial understanding of age related changes of DTI values as well as DTT metrics of the spinal cord. The results show significant differences in DTI and DTT parameters which may result from decreasing water content, myelination of fiber tracts, and the thickening diameter of fiber tracts during the maturation process. Consequently, when quantitative DTI and DTT of the spinal cord is undertaken in the pediatric population an age and level matched normative dataset should be used to accurately interpret the quantitative results. © 201

    Locomotor Training in the Pediatric Spinal Cord Injury Population: A Systematic Review of the Literature

    Get PDF
    Purpose: The aim of this review was to investigate the effects of locomotor training on pediatric SCI and develop recommendations for pediatric LT guidelines.https://jdc.jefferson.edu/dptcapstones/1002/thumbnail.jp

    Satellite derived offshore migratory movements of southern right whales (Eubalaena australis) from Australian and New Zealand wintering grounds

    Get PDF
    Funding: Australian Marine Mammal Center Grant 13/48 AIM, SDG, DH, AL http://www.marinemammals.gov.au/ The Australian Marine Mammal Center was involved in study design and anlaysis through the involvement in the project by AMMC staff, Dr Mike Double and Dr Virgina Andrews-Goff Princess Melikoff Trust Marine Mammal Conservation Program KC New Zealand Department of Conservation SC.Southern right whales (Eubalaena australis) migrate between Austral-winter calving and socialising grounds to offshore mid- to high latitude Austral-summer feeding grounds. In Australasia, winter calving grounds used by southern right whales extend from Western Australia across southern Australia to the New Zealand sub-Antarctic Islands. During the Austral-summer these whales are thought to migrate away from coastal waters to feed, but the location of these feeding grounds is only inferred from historical whaling data. We present new information on the satellite derived offshore migratory movements of six southern right whales from Australasian wintering grounds. Two whales were tagged at the Auckland Islands, New Zealand, and the remaining four at Australian wintering grounds, one at Pirates Bay, Tasmania, and three at Head of Bight, South Australia. The six whales were tracked for an average of 78.5 days (range: 29 to 150) with average individual distance of 38 km per day (range: 20 to 61 km). The length of individually derived tracks ranged from 645–6,381 km. Three likely foraging grounds were identified: south-west Western Australia, the Subtropical Front, and Antarctic waters, with the Subtropical Front appearing to be a feeding ground for both New Zealand and Australian southern right whales. In contrast, the individual tagged in Tasmania, from a sub-population that is not showing evidence of post-whaling recovery, displayed a distinct movement pattern to much higher latitude waters, potentially reflecting a different foraging strategy. Variable population growth rates between wintering grounds in Australasia could reflect fidelity to different quality feeding grounds. Unlike some species of baleen whale populations that show movement along migratory corridors, the new satellite tracking data presented here indicate variability in the migratory pathways taken by southern right whales from Australia and New Zealand, as well as differences in potential Austral summer foraging grounds.Publisher PDFPeer reviewe

    Imaging & Transcranial Magnetic Stimulation as Central Nervous System Biomarkers for Spinal Cord Injury

    No full text
    Learning Objectives Discuss the use of transcranial magnetic stimulation (TMS) to assess corticospinal tract connectivity and motor cortex representation in relation to advanced magnetic resonance imaging (MRI) Compare and contrast the use of advanced MRI technologies to assess structural and functional integrity of the brain and spinal cord Explain the clinical utility of TMS and advanced MRI technologie

    Development of pediatric spinal cord white matter atlas : preliminary analysis

    No full text
    corecore