236 research outputs found
Recommended from our members
Impacts of recent decadal changes in Asian aerosols on the East Asian summer monsoon: roles of aerosolâradiation and aerosolâcloud interactions
Anthropogenic aerosols (AA) can affect cloud and precipitation through aerosolâradiation interaction (ARI) and aerosolâcloud interaction (ACI). Over the past few decades, anthropogenic aerosol emissions have exhibited remarkable changes in the magnitude and in spatial pattern. The most significant changes are the increased emissions over both South Asia and East Asia. In this study, the atmospheric component of a state-of-the-art climate model that includes eight species of tropospheric aerosols, coupled to a multi-level mixed-layer ocean model, has been used to investigate the impacts of Asian anthropogenic aerosol precursor emission changes from 1970s to 2000s on large scale circulation and precipitation in boreal summer over East Asia. Results reveal significant changes in circulation and clouds over East Asia and over the tropical and western North Pacific (WNP). Increased Asian AA emissions lead to anomalous cyclonic circulation over the Maritime continent (MC) and anomalous anticyclonic circulation over the WNP, resulting in anomalous moisture transport convergence over the MC and therefore increased precipitation. They also lead to anomalous moisture flux divergence over both the WNP and large land areas of East Asia, especially over northern China, and therefore decreased precipitation there. These large scale circulation anomalies over the adjacent oceans are related to aerosol change induced ocean feedbacks, predominantly through ACI. It is the slow responses over the adjacent oceans (e.g., SST changes) through coupled atmosphereâocean interaction in pre-monsoon seasons and summer that shape the changes of the East Asian summer monsoon and local precipitation. The results in this study suggest that increased Asian AA emissions from 1970s to 2000s may have played an important role for the observed southward shift of the Pacific intertropical convergence zone and precipitation belt, weakening of East Asian summer monsoon and reduced precipitation over northern China in East Asia during the latter half of the twentieth century
Recommended from our members
The fall and rise of the global climate model
Global models are an essential tool for climate projections, but conventional coarse-resolution atmospheric general circulation models suffer from errors both in their parameterized cloud physics and in their representation of climatically important circulation features. A notable recent study by Terai et al.(2020, https://doi.org/10.1029/2020ms002274) documents a global model capable of
reproducing the regime-based effect of aerosols on cloud liquid water path expected from observational
evidence. This may represent a significant advance in cloud process fidelity in global models. Such
models can be expected to give a better estimate of the effective radiative forcing of the climate. If this
advance in cloud process representation can be matched by advances in the representation of circulation
features such as monsoons, then such models may also be able to navigate the complex tangle between
spatially heterogeneous aerosolâcloud interactions and regional circulation patterns. This tight link
between aerosol and circulation results in anthropogenic perturbations of climate variables of societal
importance, such as regional rainfall distributions. Upcoming global models with km-scale resolution
may improve the regional circulation and be able to take advantage of the Terai et al.(2020, https://doi.
org/10.1029/2020ms002274) improvement in cloud physics. If so, an era of significantly improved regional
climate projection capabilities may soon dawn. If not, then the improvement in cloud physics might spur
intensified efforts on problems in model dynamics. Either way, based on the rapid changes in aerosol
emissions in the near future, learning to make reliable projections based on biased models is a skill that
will not go out of style
Recommended from our members
Attribution of recent trends in temperature extremes over China: role of changes in anthropogenic aerosol emissions over Asia
Observations indicate large changes in temperature extremes over China during the last four decades, exhibiting as significant increases in the amplitude and frequency of hot extremes and decreases in the amplitude and frequency of cold extremes. An ensemble of transient experiments with a fully coupled atmosphere-ocean model HadGEM3-GC2, including both anthropogenic forcing and natural forcing, successfully reproduces the spatial pattern and magnitude of observed historical trends in both hot and cold extremes. The model simulated trends in temperature extremes primarily come from the positive trends in clear sky longwave radiation, which is mainly due to the increases in greenhouse gases (GHGs). An ensemble of sensitivity experiments with Asian anthropogenic aerosol (AA) emissions fixed at their 1970s levels tends to overestimate the trends in temperature extremes, indicating that local AA emission changes have moderated the trends in these temperature extremes over China. The recent increases in Asian AA drive cooling trends over China by inducing negative clear sky shortwave radiation directly through the aerosol-radiation interaction, which partly offsets the strong warming effect by GHG changes. The cooling trends induced by Asian AA changes are weaker over Northern China during summer, which is due to the warming effect by positive shortwave cloud radiative effect through the AA-induced atmosphere-cloud feedback. This accounts for the observed north-south gradients of the historical trends in some temperature extremes over China, highlighting the importance of local Asian AA emission changes on spatial heterogeneity of trends in temperature extremes
Recommended from our members
Mechanisms for a remote response to Asian aerosol emissions in boreal winter
Asian emissions of anthropogenic aerosols have increased rapidly since 1980, with half of the increase since the pre-industrial era occurring in this period. Transient experiments with the HadGEM3-GC2 coupled model were designed to isolate the impact of Asian aerosols on global climate. In boreal winter, it is found that this increase has resulted in local circulation changes, which in turn have driven increases in temperature and decreases in precipitation over China, alongside an intensification of the offshore monsoon flow. Over India, the opposite response is found, with decreasing temperatures and increasing precipitation. The dominant feature of the local circulation changes is an increase in low-level convergence, ascent, and precipitation over the Maritime continent, which forms part of a tropical-Pacific-wide La-Nina-like response.
HadGEM3-GC2 also simulates pronounced far-field responses. A decreased meridional temperature gradient in the North Pacific leads to a positive-Pacific-North-American circulation pattern, with associated temperature anomalies over the North Pacific and North America. An anomalous anticyclonic circulation over the North Atlantic, and an anomalous cyclonic circulation over the Mediterranean drive advection of cold air into Europe, causing cooling in this region. Using a steady-state primitive equation model, LUMA, we demonstrate that these far-field midlatitude response arise primarily as a result of Rossby waves generated over China, rather than in the Equatorial Pacific
Recommended from our members
Advances in understanding large-scale responses of the water cycle to climate change
Globally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at âŒ2â3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to inâstorm and largerâscale feedback processes, while changes in largeâscale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population
Sterilization of lung matrices by supercritical carbon dioxide
Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO(2)) that can achieve a sterility assurance level 10(â6) in decellularized lung matrix. The effects of ScCO(2) treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO(2) did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO(2), indicating that ScCO(2) produces a matrix that is stable during storage. The current study's results indicate that ScCO(2) can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes
Recommended from our members
Impact of Asian aerosols on the summer monsoon strongly modulated by regional precipitation biases
Reliable attribution of Asian summer monsoon variations to aerosol forcing is critical to reducing uncertainties in future projections of regional water availability, which is of utmost importance for risk management and adaptation planning in this densely populated region. Yet, simulating the monsoon remains a challenge for climate models that suffer from long-standing biases, undermining their reliability in attributing anthropogenically forced changes. We analyze a suite of climate model experiments to identify a link between model biases and monsoon responses to Asian aerosols and associated physical mechanisms, including the role of large-scale circulation changes. The aerosol impact on monsoon precipitation and circulation is strongly influenced by a model's ability to simulate the spatio-temporal variability in the climatological monsoon winds, clouds, and precipitation across Asia, which modulates the magnitude and efficacy of aerosolâcloudâprecipitation interactions, an important component of the total aerosol response. There is a strong interplay between South Asia and East Asia monsoon precipitation biases and their relative predominance in driving the overall monsoon response. We found a striking contrast between the early- and late-summer aerosol-driven changes ascribable to opposite signs and seasonal evolution of the biases in the two regions. A realistic simulation of the evolution of the large-scale atmospheric circulation is crucial to realize the full extent of the aerosol impact over Asia. These findings provide important implications for better understanding and constraining the diversity and inconsistencies of model responses to aerosol changes over Asia in historical simulations and future projections
Recommended from our members
How well do the CMIP6 models simulate dust aerosols?
Mineral dust impacts key processes in the Earth system, including the radiation budget, clouds, and nutrient cycles. We evaluate dust aerosols in 16 models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) against multiple reanalyses and satellite observations. Most models, and particularly the multi-model ensemble mean (MEM), capture the spatial patterns and seasonal cycles of global dust processes well. However, large uncertainties and inter-model diversity are found. For example, global dust emissions, primarily driven by model-simulated surface winds, vary by a factor of 5 across models, while the MEM estimate is double the amount in reanalyses. The ranges of CMIP6 model-simulated global dust emission, deposition, burden and optical depth (DOD) are larger than previous generations of models. Models present considerable disagreement in dust seasonal cycles over North China and North America. Here, DOD values are overestimated by most CMIP6 models, with the MEM estimate 1.2â1.7 times larger compared to satellite and reanalysis datasets. Such overestimates can reach up to a factor of 5 in individual models. Models also fail to reproduce some key features of the regional dust distribution, such as dust accumulation along the southern edge of the Himalayas. Overall, there are still large uncertainties in CMIP6 modelsâ simulated dust processes, which feature inconsistent biases throughout the dust lifecycle between models, particularly in the relationship connecting dust mass to DOD. Our results imply that modelled dust processes are becoming more uncertain as models become more sophisticated. More detailed output relating to the dust cycle in future intercomparison projects will enable better constraints of global dust cycles, and enable the potential identification of observationally-constrained links between dust cycles and optical properties
Recommended from our members
Decadal trends in surface solar radiation and cloud cover over the North Atlantic sector during the last four decades: drivers and physical processes
Satellite-derived products and reanalyses show consistent increases in downward surface solar radiation (SSR) and decreases in cloud cover over North America and Europe from the 1980s to 2010s. These trends show a strong seasonality, with the largest changes in boreal summer. A set of timeslice experiments with an atmospheric general circulation model (AGCM) forced with prescribed changes in sea surface temperature/sea ice extent (SST/SIE), greenhouse gas (GHG) concentrations, and anthropogenic aerosol (AA) emissions, together and separately, is performed to assess the relative roles of different forcings in these observed trends. The model reproduces the main observed features over Europe and North America, including the seasonality of trends, suggesting a dominant role of forced changes in the recent trends in SSR and cloud cover. Responses to individual forcings indicate that recent decadal trends in SSR over Europe are predominantly driven by AA emission reductions, with an additional influence from SST/SIE and GHG changes. In contrast, changes in AA, SST/SIE, and GHG contribute more equally to simulated decadal trends in SSR and cloud cover over North America, although SST/SIE play the most important role. In our simulations, responses of SSR to AA emission reductions are primarily governed by aerosol-radiation interactions. Responses to SST/SIE and GHG changes are predominantly due to cloud cover changes, which are driven by atmospheric circulation and humidity changes. This process level understanding of how different forcing factors influence decadal trends in SSR and cloud cover is valuable for understanding past changes and future projections in global and regional surface energy budgets, surface warming, and global and regional hydrological cycles
Recommended from our members
Projected near-term changes of temperature extremes in Europe and China under different aerosol emissions
This study assesses near-term future changes in temperature extremes over China and Europe in scenarios with two very different anthropogenic aerosol (AA) pathways from 2016 to 2049: a maximum technically feasible aerosol reduction (MTFR), and a current legislation aerosol scenario (CLE), both with greenhouses gas forcing following RCP 4.5. Simulations with a fully coupled atmosphere-ocean model HadGEM3-GC2 show that there is an increase in hot extremes and a decrease in cold extremes relative to the present day (1995-2014) over China and Europe in both scenarios. However, the magnitude of the changes in both hot and cold extremes depends strongly on the AA pathway. The AA reduction in MTFR amplifies the changes in temperature extremes relative to CLE, and accounts for 40% and 30% of the projected changes in temperature extremes relative to present day over China and Europe respectively. Thus, this study suggests that future and current policy decisions about AA emissions have the potential for a large near-term impact on temperature extremes
- âŠ